SYMPLECTIC SUPERCUSPIDAL REPRESENTATIONS OF GL(2n) OVER p-ADIC FIELDS

被引:14
作者
Jiang, Dihua [1 ]
Nien, Chufeng [2 ]
Qin, Yujun [3 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Natl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
[3] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
symplectic representation; Shalika models; local Langlands transfer; local descent; supercuspidal; representations of p-adic groups; AUTOMORPHIC-FORMS; SHALIKA MODELS; UNIQUENESS; ENDOSCOPY; PROOF; LIFT;
D O I
10.2140/pjm.2010.245.273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is part two of the authors' work on supercuspidal representations of GL(2n) over p-adic fields. We consider the complete relations among the local theta correspondence, local Langlands transfer, and the local descent attached to a given irreducible symplectic supercuspidal representation of p-adic GL(2n). This is the natural extension of the work of Ginzburg, Rallis and Soudry and of Jiang and Soudry on the local descents and the local Langlands transfers. The approach undertaken in this paper is purely local. A mixed approach with both local and global methods, which works for more general classical groups, has been considered by Jiang and Soudry.
引用
收藏
页码:273 / 313
页数:41
相关论文
共 23 条
[1]  
[Anonymous], 1976, Russian Math. Surveys, DOI 10.1070/RM1976v031n03ABEH001532
[2]  
BERNSTEIN IN, 1977, ANN SCI ECOLE NORM S, V10, P441
[3]  
Chenevier G, 2009, J AM MATH SOC, V22, P467
[4]   On the nonvanishing of the central value of the Rankin-Selberg L-functions [J].
Ginzburg, D ;
Jiang, DH ;
Rallis, S .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (03) :679-722
[5]   On a correspondence between cuspidal representations of GL2n and (Sp)over-tilde2n [J].
Ginzburg, D ;
Rallis, S ;
Soudry, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (03) :849-907
[6]  
Ginzburg D, 2001, INT MATH RES NOTICES, V2001, P729
[7]  
GINZBURG D, 1997, MEM AM MATH SOC, V128
[8]  
Harris M., 2001, The Geometry and Cohomology of Some Simple Shimura Varieties. Annals of Mathematics Studies 151
[9]  
Henniart G, 2000, INVENT MATH, V139, P439, DOI 10.1007/s002220050012
[10]  
Jacquet H, 1996, COMPOS MATH, V102, P65