Star Identification and Attitude Determination With Projective Cameras

被引:18
作者
Christian, John A. [1 ]
Crassidis, John L. [2 ]
机构
[1] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[2] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
基金
美国国家航空航天局;
关键词
Cameras; Position measurement; Calibration; Sensors; Pattern recognition; Geometry; Space vehicles; Asterisms; attitude determination; invariant theory; pattern recognition; spacecraft navigation; star identification; star trackers; total least squares; Wahba’ s problem; LEAST-SQUARES PROBLEM; OBJECT RECOGNITION; ALGORITHM; CALIBRATION; TRACKERS; SEARCH;
D O I
10.1109/ACCESS.2021.3054836
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Images of starfields collected by a projective camera are useful for a variety of scientific and engineering purposes. This utility is exemplified by star trackers, which are amongst the most commonly used sensors for determining the attitude of modern spacecraft. While the literature on star identification and star-based attitude determination is extensive, most algorithms are developed in an ad hoc manner. This work provides a comprehensive and systematic framework for invariant-based star identification and shows most past star identification algorithms to be special cases within this framework. The new star identification framework is found to motivate new problems in attitude determination and sensor self-calibration. Specifically, new algorithms are presented for simultaneous attitude determination and camera calibration for a generic wide field-of-view sensor using a single starfield image. In the special case where camera focal length is the only unknown calibration parameter, attitude determination performance of the new algorithm is indiscernible from a perfectly calibrated camera.
引用
收藏
页码:25768 / 25794
页数:27
相关论文
共 71 条
[11]   Fast star-pattern recognition using planar triangles [J].
Cole, CL ;
Crassidis, JL .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2006, 29 (01) :64-71
[12]  
Crassidis J.L, 2012, Optimal Estimation of Dynamic Systems
[13]   Maximum Likelihood Analysis of the Total Least Squares Problem with Correlated Errors [J].
Crassidis, John L. ;
Cheng, Yang .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2019, 42 (06) :1204-1217
[14]  
Dong Y., 2006, Tsinghua Sci.Technol., V11, P543, DOI 10.1016/S1007- 0214(06)70232-2.
[15]   A LEAST SQUARES ESTIMATE OF SATELLITE ATTITUDE [J].
FARRELL, JL ;
STUELPNA.JC ;
WESSNER, RH ;
VELMAN, JR .
SIAM REVIEW, 1966, 8 (03) :384-&
[16]  
Feissel M, 1998, ASTRON ASTROPHYS, V331, pL33
[17]   THE SECOND REALIZATION OF THE INTERNATIONAL CELESTIAL REFERENCE FRAME BY VERY LONG BASELINE INTERFEROMETRY [J].
Fey, A. L. ;
Gordon, D. ;
Jacobs, C. S. ;
Ma, C. ;
Gaume, R. A. ;
Arias, E. F. ;
Bianco, G. ;
Boboltz, D. A. ;
Boeckmann, S. ;
Bolotin, S. ;
Charlot, P. ;
Collioud, A. ;
Engelhardt, G. ;
Gipson, J. ;
Gontier, A. -M. ;
Heinkelmann, R. ;
Kurdubov, S. ;
Lambert, S. ;
Lytvyn, S. ;
MacMillan, D. S. ;
Malkin, Z. ;
Nothnagel, A. ;
Ojha, R. ;
Skurikhina, E. ;
Sokolova, J. ;
Souchay, J. ;
Sovers, O. J. ;
Tesmer, V. ;
Titov, O. ;
Wang, G. ;
Zharov, V. .
ASTRONOMICAL JOURNAL, 2015, 150 (02)
[18]   INVARIANT DESCRIPTORS FOR 3-D OBJECT RECOGNITION AND POSE [J].
FORSYTH, D ;
MUNDY, JL ;
ZISSERMAN, A ;
COELHO, C ;
HELLER, A ;
ROTHWELL, C .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (10) :971-991
[19]  
Gallier J, 2011, TEXTS APPL MATH, V38, P1, DOI 10.1007/978-1-4419-9961-0
[20]  
Gerhard J., 2016, THESIS W VIRGINIA U