Energy-Critical NLS with Quadratic Potentials

被引:25
作者
Killip, Rowan [1 ]
Visan, Monica [1 ,2 ]
Zhang, Xiaoyi [3 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Inst Adv Study, Princeton, NJ 08540 USA
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Energy critical; Nonlinear Schrodinger equation; NONLINEAR SCHRODINGER-EQUATION; GLOBAL WELL-POSEDNESS; CAUCHY-PROBLEM; SCATTERING; WELLPOSEDNESS; EXISTENCE;
D O I
10.1080/03605300903328109
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the defocusing [image omitted]-critical nonlinear Schrodinger equation in all dimensions (n epsilon 3) with a quadratic potential [image omitted]. We show global well-posedness for radial initial data obeying delta u0(x), xu0(x)L2. In view of the potential V, this is the natural energy space. In the repulsive case, we also prove scattering. We follow the approach pioneered by Bourgain and Tao in the case of no potential; indeed, we include a proof of their results that incorporates a couple of simplifications discovered while treating the problem with quadratic potential.
引用
收藏
页码:1531 / 1565
页数:35
相关论文
共 27 条
[1]   Global wellposedness of defocusing critical nonlinear Schrodinger equation in the radial case [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :145-171
[2]   Global existence results for nonlinear Schrodinger equations with quadratic potentials [J].
Carles, R .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (02) :385-398
[3]   Nonlinear Schrodinger equations with repulsive harmonic potential and applications [J].
Carles, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) :823-843
[4]   Remarks on nonlinear Schrodinger equations with harmonic potential [J].
Carles, R .
ANNALES HENRI POINCARE, 2002, 3 (04) :757-772
[5]  
CARLES R, 2003, JOURN EDP EXP
[6]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[7]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[8]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[9]  
COHENTANNOUDJI C, 1999, CONDENSATION BOSEEIN
[10]   Global existence and scattering for rough solutions of a nonlinear Schrodinger equation on R3 [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (08) :987-1014