The Binding Mode of ATP Revealed by the Solution Structure of the N-domain of Human ATP7A

被引:23
作者
Banci, Lucia [1 ,2 ,3 ]
Bertini, Ivano [1 ,2 ]
Cantini, Francesca [1 ,2 ]
Inagaki, Sayaka [1 ]
Migliardi, Manuele [1 ]
Rosato, Antonio [1 ,2 ]
机构
[1] Univ Florence, Magnet Resonance Ctr, I-50019 Sesto Fiorentino, Italy
[2] Univ Florence, Dept Chem, I-50019 Sesto Fiorentino, Italy
[3] FIORGEN Fdn, I-50019 Sesto Fiorentino, Italy
关键词
P-TYPE ATPASES; MAGNETIC-RESONANCE RELAXATION; COPPER-TRANSPORTING ATPASE; MENKES DISEASE; CANDIDATE GENE; BACKBONE DYNAMICS; DIPOLAR COUPLINGS; CRYSTAL-STRUCTURE; CALCIUM-PUMP; PROTEIN NMR;
D O I
10.1074/jbc.M109.054262
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report the solution NMR structures of the N-domain of the Menkes protein (ATP7A) in the ATP-free and ATP-bound forms. The structures consist of a twisted antiparallel six-stranded beta-sheet flanked by two pairs of alpha-helices. A protein loop of 50 amino acids located between beta 3 and beta 4 is disordered and mobile on the subnanosecond time scale. ATP binds with an affinity constant of (1.2 +/- 0.1) x 10(4) M-1 and exchanges with a rate of the order of 1 x 10(3) s(-1). The ATP-binding cavity is considerably affected by the presence of the ligand, resulting in a more compact conformation in the ATP-bound than in the ATP-free form. This structural variation is due to the movement of the alpha 1-alpha 2 and beta 2-beta 3 loops, both of which are highly conserved in copper(I)-transporting P-IB-type ATPases. The present structure reveals a characteristic binding mode of ATP within the protein scaffold of the copper(I)-transporting P-IB-type ATPases with respect to the other P-type ATPases. In particular, the binding cavity contains mainly hydrophobic aliphatic residues, which are involved in van der Waal's interactions with the adenine ring of ATP, and a Glu side chain, which forms a crucial hydrogen bond to the amino group of ATP.
引用
收藏
页码:2537 / 2544
页数:8
相关论文
共 42 条
[1]   Metallochaperones and metal-transporting ATPases: A comparative analysis of sequences and structures [J].
Arnesano, F ;
Banci, L ;
Bertini, I ;
Ciofi-Baffoni, S ;
Molteni, E ;
Huffman, DL ;
O'Halloran, TV .
GENOME RESEARCH, 2002, 12 (02) :255-271
[2]   Evaluating protein structures determined by structural genomics consortia [J].
Bhattacharya, Aneerban ;
Tejero, Roberto ;
Montelione, Gaetano T. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 66 (04) :778-795
[3]  
CASE DA, 2008, AMBER 10 VERSION 8 0
[4]   ISOLATION OF A CANDIDATE GENE FOR MENKES DISEASE THAT ENCODES A POTENTIAL HEAVY-METAL BINDING-PROTEIN [J].
CHELLY, J ;
TUMER, Z ;
TONNESEN, T ;
PETTERSON, A ;
ISHIKAWABRUSH, Y ;
TOMMERUP, N ;
HORN, N ;
MONACO, AP .
NATURE GENETICS, 1993, 3 (01) :14-19
[5]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[6]   Copper transporting P-type ATPases and human disease [J].
Cox, DW ;
Moore, SDP .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2002, 34 (05) :333-338
[7]   MolProbity: all-atom contacts and structure validation for proteins and nucleic acids [J].
Davis, Ian W. ;
Leaver-Fay, Andrew ;
Chen, Vincent B. ;
Block, Jeremy N. ;
Kapral, Gary J. ;
Wang, Xueyi ;
Murray, Laura W. ;
Arendall, W. Bryan, III ;
Snoeyink, Jack ;
Richardson, Jane S. ;
Richardson, David C. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W375-W383
[8]   Solution structure of the N-domain of Wilson disease protein: Distinct nucleotide-binding environment and effects of disease mutations [J].
Dmitriev, O ;
Tsivkovskii, R ;
Abildgaard, F ;
Morgan, CT ;
Markley, JL ;
Lutsenko, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (14) :5302-5307
[9]   A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings [J].
Dosset, P ;
Hus, JC ;
Marion, D ;
Blackledge, M .
JOURNAL OF BIOMOLECULAR NMR, 2001, 20 (03) :223-231
[10]   BACKBONE DYNAMICS OF A FREE AND A PHOSPHOPEPTIDE-COMPLEXED SRC HOMOLOGY-2 DOMAIN STUDIED BY N-15 NMR RELAXATION [J].
FARROW, NA ;
MUHANDIRAM, R ;
SINGER, AU ;
PASCAL, SM ;
KAY, CM ;
GISH, G ;
SHOELSON, SE ;
PAWSON, T ;
FORMANKAY, JD ;
KAY, LE .
BIOCHEMISTRY, 1994, 33 (19) :5984-6003