Composite Electrospun Scaffolds for Engineering Tubular Bone Grafts

被引:2
|
作者
Ekaputra, Andrew Krishna [2 ]
Zhou, Yefang [3 ]
Cool, Simon McKenzie [4 ]
Hutmacher, Dietmar Werner [1 ]
机构
[1] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4001, Australia
[2] Natl Univ Singapore, Grad Program Bioengn, Singapore 117548, Singapore
[3] Cent S Univ, Sch Biol Sci & Technol, Dept Cellular Biol, Changsha, Hunan, Peoples R China
[4] Inst Med Biol, Dept Stem Cells & Tissue Repair, Singapore, Singapore
关键词
MESENCHYMAL STEM-CELLS; MARROW STROMAL CELLS; OSTEOGENIC DIFFERENTIATION; EXTRACELLULAR-MATRIX; IN-VITRO; COLLAGEN; CARTILAGE; CULTURE; OSTEOBLAST; POLYMER;
D O I
10.1089/ten.tea.2009.0186
中图分类号
Q813 [细胞工程];
学科分类号
摘要
In this study, poly (epsilon-caprolactone) [PCL] and its collagen composite blend (PCL/Col) were fabricated to scaffolds using electrospinning method. Incorporated collagen was present on the surface of the fibers, and it modulated the attachment and proliferation of pig bone marrow mesenchymal cells (pBMMCs). Osteogenic differentiation markers were more pronounced when these cells were cultured on PCL/Col fibrous meshes, as determined by immunohistochemistry for collagen type I, osteopontin, and osteocalcin. Matrix mineralization was observed only on osteogenically induced PCL/Col constructs. Long bone analogs were created by wrapping osteogenic cell sheets around the PCL/Col meshes to form hollow cylindrical cell-scaffold constructs. Culturing these constructs under dynamic conditions enhanced bone-like tissue formation and mechanical strength. We conclude that electrospun PCL/Col mesh is a promising material for bone engineering applications. Its combination with osteogenic cell sheets offers a novel and promising strategy for engineering of tubular bone analogs.
引用
收藏
页码:3779 / 3788
页数:10
相关论文
共 50 条
  • [41] Piezoelectric Electrospun Fibrous Scaffolds for Bone, Articular Cartilage and Osteochondral Tissue Engineering
    Barbosa, Frederico
    Ferreira, Frederico Castelo
    Silva, Joao Carlos
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)
  • [42] Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering
    Andric T.
    Taylor B.L.
    Whittington A.R.
    Freeman J.W.
    Regenerative Engineering and Translational Medicine, 2015, 1 (1-4) : 32 - 41
  • [43] Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering
    Salifu, Ali A.
    Lekakou, Constantina
    Labeed, Fatima H.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (07) : 1911 - 1926
  • [44] Calcium Phosphate Coated Electrospun Fiber Matrices as Scaffolds for Bone Tissue Engineering
    Nandakumar, Anandkumar
    Yang, Liang
    Habibovic, Pamela
    van Blitterswijk, Clemens
    LANGMUIR, 2010, 26 (10) : 7380 - 7387
  • [45] Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds
    Moradi, Sadegh L.
    Golchin, Ali
    Hajishafieeha, Zahra
    Khani, Mohammad-Mehdi
    Ardeshirylajimi, Abdolreza
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (10) : 6509 - 6522
  • [46] DESIGNING ELECTROSPUN SCAFFOLDS FOR TISSUE ENGINEERING
    Glasmacher, B.
    Chakradeo, T.
    Zemetsch, H.
    Szentivanyi, A.
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2011, 34 (08): : 644 - 645
  • [47] Electrospun scaffolds for stem cell engineering
    Lim, Shawn H.
    Mao, Hai-Quan
    ADVANCED DRUG DELIVERY REVIEWS, 2009, 61 (12) : 1084 - 1096
  • [48] Biomimetic electrospun scaffolds for tissue engineering
    Hadjiargyrou, Michael
    FASEB JOURNAL, 2008, 22
  • [49] Electrospun multifunctional tissue engineering scaffolds
    Chong Wang
    Min Wang
    Frontiers of Materials Science, 2014, 8 : 3 - 19
  • [50] Electrospun and Electrosprayed Scaffolds for Tissue Engineering
    Maurmann, Natasha
    Sperling, Laura-Elena
    Pranke, Patricia
    CUTTING-EDGE ENABLING TECHNOLOGIES FOR REGENERATIVE MEDICINE, 2018, 1078 : 79 - 100