Pressure-induced structural dimerization in the hyperhoneycomb iridate β-Li2IrO3 at low temperatures

被引:19
|
作者
Veiga, L. S., I [1 ]
Glazyrin, K. [2 ]
Fabbris, G. [3 ]
Dashwood, C. D. [1 ]
Vale, J. G. [1 ]
Park, H. [4 ,5 ]
Etter, M. [2 ]
Irifune, T. [6 ,7 ]
Pascarelli, S. [8 ]
McMorrow, D. F. [1 ]
Takayama, T. [9 ,10 ,11 ]
Takagi, H. [9 ,10 ,11 ]
Haskel, D. [3 ]
机构
[1] UCL, London Ctr Nanotechnol, Gower St, London WC1E 6BT, England
[2] DESY, Notkestr 85, D-22607 Hamburg, Germany
[3] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[4] Univ Illinois, Phys Dept, Chicago, IL 60607 USA
[5] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[6] Ehime Univ, Geodynam Res Ctr, Matsuyama, Ehime 7908577, Japan
[7] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo, Japan
[8] European Synchrotron Radiat Facil, 71 Ave Martyrs, F-38043 Grenoble, France
[9] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[10] Univ Tokyo, Dept Phys, 7-3-1 Hongo, Tokyo 1130033, Japan
[11] Univ Tokyo, Dept Adv Mat, 7-3-1 Hongo, Tokyo 1130033, Japan
基金
英国工程与自然科学研究理事会;
关键词
POLYCRYSTALLINE DIAMOND; SPIN; LIQUID;
D O I
10.1103/PhysRevB.100.064104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A pressure-induced collapse of magnetic ordering in beta-Li2IrO3 at P-m similar to 1.5-2 GPa has previously been interpreted as evidence for possible emergence of spin liquid states in this hyperhoneycomb iridate, raising prospects for experimental realizations of the Kitaev model. Based on structural data obtained at room temperature, this magnetic transition is believed to originate in small lattice perturbations that preserve crystal symmetry, and related changes in bond-directional anisotropic exchange interactions. Here we report on the evolution of the crystal structure of beta-Li2IrO3 under pressure at low temperatures (T <= 50 K) and show that the suppression of magnetism coincides with a change in lattice symmetry involving Ir-Ir dimerization. The critical pressure for dimerization shifts from 4.4(2) GPa at room temperature to similar to 1.5-2 GPa below 50 K. While a direct Fddd -> C-2/c transition is observed at room temperature, the low temperature transitions involve new as well as coexisting dimerized phases. Further investigation of the Ir (L-3/L-2) isotropic branching ratio in x-ray absorption spectra indicates that the previously reported departure of the electronic ground state from a J(eff) = 1/2 state is closely related to the onset of dimerized phases. In essence, our results suggest that the predominant mechanism driving the collapse of magnetism in beta-Li2IrO3 is the pressure-induced formation of Ir-2 dimers in the hyperhoneycomb network. The results further confirm the instability of the J(eff) = 1/2 moments and related noncollinear spiral magnetic ordering against formation of dimers in the low-temperature phase of compressed beta-Li2IrO3.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Optical signature of the pressure-induced dimerization in the honeycomb iridate α-Li2IrO3
    Hermann, V
    Ebad-Allah, J.
    Freund, F.
    Jesche, A.
    Tsirlin, A. A.
    Gegenwart, P.
    Kuntscher, C. A.
    PHYSICAL REVIEW B, 2019, 99 (23)
  • [2] Pressure-induced collapse of the spin-orbital Mott state in the hyperhoneycomb iridate β-Li2IrO3
    Takayama, T.
    Krajewska, A.
    Gibbs, A. S.
    Yaresko, A. N.
    Ishii, H.
    Yamaoka, H.
    Ishii, K.
    Hiraoka, N.
    Funnell, N. P.
    Bull, C. L.
    Takagi, H.
    PHYSICAL REVIEW B, 2019, 99 (12)
  • [3] Hyperhoneycomb Iridate β-Li2IrO3 as a Platform for Kitaev Magnetism
    Takayama, T.
    Kato, A.
    Dinnebier, R.
    Nuss, J.
    Kono, H.
    Veiga, L. S. I.
    Fabbris, G.
    Haskel, D.
    Takagi, H.
    PHYSICAL REVIEW LETTERS, 2015, 114 (07)
  • [4] Magnetic excitations and interactions in the Kitaev hyperhoneycomb iridate β-Li2IrO3
    Halloran, Thomas
    Wang, Yishu
    Li, Mengqun
    Rousochatzakis, Ioannis
    Chauhan, Prashant
    Stone, M. B.
    Takayama, Tomohiro
    Takagi, Hidenori
    Armitage, N. P.
    Perkins, Natalia B.
    Broholm, Collin
    PHYSICAL REVIEW B, 2022, 106 (06)
  • [5] Lattice dynamics and structural transition of the hyperhoneycomb iridate β-Li2IrO3 investigated by high-pressure Raman scattering
    Choi, Sungkyun
    Kim, Heung-Sik
    Kim, Hun-Ho
    Krajewska, Aleksandra
    Kim, Gideok
    Minola, Matteo
    Takayama, Tomohiro
    Takagi, Hidenori
    Haule, Kristjan
    Vanderbilt, David
    Keimer, Bernhard
    PHYSICAL REVIEW B, 2020, 101 (05)
  • [6] Pressure-induced dimerization and collapse of antiferromagnetism in the Kitaev material α-Li2IrO3
    Shen, Bin
    Breitner, Franziska
    Prishchenko, Danil
    Manna, Rudra Sekhar
    Jesche, Anton
    Seidler, Maximilian L.
    Gegenwart, Philipp
    Tsirlin, Alexander A.
    PHYSICAL REVIEW B, 2022, 105 (05)
  • [7] Pressure tuning of bond-directional exchange interactions and magnetic frustration in the hyperhoneycomb iridate β-Li2IrO3
    Veiga, L. S. I.
    Etter, M.
    Glazyrin, K.
    Sun, F.
    Escanhoela, C. A. Jr
    Fabbris, G.
    Mardegan, J. R. L.
    Malavi, P. S.
    Deng, Y.
    Stavropoulos, P. P.
    Kee, H. -Y.
    Yang, W. G.
    van Veenendaal, M.
    Schilling, J.
    Takayama, T.
    Takagi, H.
    Haskel, D.
    PHYSICAL REVIEW B, 2017, 96 (14)
  • [8] Electronic structure and x-ray magnetic circular dichroism in the hyperhoneycomb iridate β-Li2IrO3
    Antonov, V. N.
    Uba, S.
    Uba, L.
    PHYSICAL REVIEW B, 2018, 98 (24)
  • [9] Interpretation of Ir L-edge isotropic x-ray absorption spectra across the pressure-induced dimerization transition in hyperhoneycombβ-Li2IrO3
    van Veenendaal, Michel
    Haskel, Daniel
    PHYSICAL REVIEW B, 2022, 105 (21)
  • [10] Spiral order in the honeycomb iridate Li2IrO3
    Reuther, Johannes
    Thomale, Ronny
    Rachel, Stephan
    PHYSICAL REVIEW B, 2014, 90 (10)