Structural Stability, Electronic Structures, Mechanical Properties and Debye Temperature of Transition Metal Impurities in Tungsten: A First-Principles Study

被引:29
|
作者
Jiang, Diyou [1 ]
Wu, Musheng [2 ]
Liu, Desheng [3 ]
Li, Fangfang [1 ]
Chai, Minggang [1 ]
Liu, Sanqiu [4 ]
机构
[1] Nanchang Hangkong Univ, Key Lab Nondestruct Testing, Minist Educ, Nanchang 330063, Jiangxi, Peoples R China
[2] Jiangxi Normal Univ, Dept Phys, Nanchang 330022, Jiangxi, Peoples R China
[3] Jiangxi Univ Sci & Technol, Sch Energy & Machinery Engn, Nanchang 330013, Jiangxi, Peoples R China
[4] Nanchang Univ, Dept Phys, Nanchang 330047, Jiangxi, Peoples R China
关键词
W alloys; phase stability; mechanical properties; melting point and hardness; Debye temperature; the first principles; ELASTIC PROPERTIES; PHASE-STABILITY; COHESIVE ENERGY; CONSTANTS; ALLOYS; COMPOSITES; TANTALUM;
D O I
10.3390/met9090967
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structural stability, electronic structures, mechanical properties and Debye temperature of W-TM (TM = Cr, Cu, Fe, Mn, Mo and Ni, respectively) alloys have been investigated by first principles method. The lattice constant, cell volume, formation energy and cohesive energy of W-TM alloys are calculated. W-TM alloys still maintain bcc lattice, and have no structural phase transformation. It is shown that W-Mo and W-Mn alloys have better alloying ability with strong interactions between W and Mo/Mn atoms. However, the alloying ability of W-Cu, W-Fe, W-Cr and W-Ni is poor, and there is a weak chemical interaction between W and Cu/Cr/Fe/Ni atoms. Using the optimized lattice, the elastic constants are calculated, and the elastic moduli and other mechanical parameters are derived. Results show that the mechanical strength of W-TM alloys is lower than that of pure W, especially W-Cu and W-Ni alloys. However, the B/G ratio and Poisson's ratio of W-TM alloys are higher than that of pure W, indicating that TM alloying can significantly improve the ductility of pure W. The metallicity of pure W can be enhanced by doping Fe or Mn, while doping Cr, Cu, Mo and Ni reduces the metallicity of pure W, of which W-Cu alloy has worst metallicity.
引用
收藏
页数:16
相关论文
empty
未找到相关数据