Conditioned random walks and interaction-driven condensation

被引:9
|
作者
Szavits-Nossan, Juraj [1 ]
Evans, Martin R. [1 ]
Majumdar, Satya N. [2 ,3 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, SUPA, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Paris Sud 11, Lab Phys Theor & Modeles Stat, UMR 8626, Batiment 100, F-91405 Orsay, France
[3] CNRS, Batiment 100, F-91405 Orsay, France
基金
英国工程与自然科学研究理事会;
关键词
random walk; condensation; large deviations; local time; zero-range process; ZERO-RANGE PROCESS; 1ST-PASSAGE PROPERTIES; STATISTICAL-MECHANICS; AREA; EXCURSION; MODELS; TIME;
D O I
10.1088/1751-8121/50/2/024005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a discrete-time continuous-space random walk under the constraints that the number of returns to the origin (local time) and the total area under the walk are fixed. We first compute the joint probability of an excursion having area a and returning to the origin for the first time after time tau. We then show how condensation occurs when the total area constraint is increased: an excursion containing a finite fraction of the area emerges. Finally we show how the phenomena generalises previously studied cases of condensation induced by several constraints and how it is related to interaction-driven condensation which allows us to explain the phenomenon in the framework of large deviation theory.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Condensation and Extremes for a Fluctuating Number of Independent Random Variables
    Godreche, Claude
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)
  • [42] Diffusivity of a random walk on random walks
    Boissard, Emmanuel
    Cohen, Serge
    Espinasse, Thibault
    Norris, James
    RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (02) : 267 - 283
  • [43] Distributed Random Walks
    Das Sarma, Atish
    Nanongkai, Danupon
    Pandurangan, Gopal
    Tetali, Prasad
    JOURNAL OF THE ACM, 2013, 60 (01)
  • [44] Random Walks in Hypergraph
    Bellaachia, Abdelghani
    Al-Dhelaan, Mohammed
    INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES, 2021, 15 : 13 - 20
  • [45] On subordinate random walks
    Mimica, Ante
    FORUM MATHEMATICUM, 2017, 29 (03) : 653 - 664
  • [46] Hyperbolic random walks
    Gruet, Jean-Claude
    SEMINAIRE DE PROBABILITES XLI, 2008, 1934 : 279 - 294
  • [47] Random Walks in Degenerate Random Environments
    Holmes, Mark
    Salisbury, Thomas S.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (05): : 1050 - 1077
  • [48] RANDOM WALKS IN CONES
    Denisov, Denis
    Wachtel, Vitali
    ANNALS OF PROBABILITY, 2015, 43 (03) : 992 - 1044
  • [49] Cascading random walks
    Subramani, K
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2005, 16 (03) : 599 - 622
  • [50] KENDALL RANDOM WALKS
    Jasiulis-Goldyn, Barbara H.
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2016, 36 (01): : 165 - 185