Conditioned random walks and interaction-driven condensation

被引:9
|
作者
Szavits-Nossan, Juraj [1 ]
Evans, Martin R. [1 ]
Majumdar, Satya N. [2 ,3 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, SUPA, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Paris Sud 11, Lab Phys Theor & Modeles Stat, UMR 8626, Batiment 100, F-91405 Orsay, France
[3] CNRS, Batiment 100, F-91405 Orsay, France
基金
英国工程与自然科学研究理事会;
关键词
random walk; condensation; large deviations; local time; zero-range process; ZERO-RANGE PROCESS; 1ST-PASSAGE PROPERTIES; STATISTICAL-MECHANICS; AREA; EXCURSION; MODELS; TIME;
D O I
10.1088/1751-8121/50/2/024005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a discrete-time continuous-space random walk under the constraints that the number of returns to the origin (local time) and the total area under the walk are fixed. We first compute the joint probability of an excursion having area a and returning to the origin for the first time after time tau. We then show how condensation occurs when the total area constraint is increased: an excursion containing a finite fraction of the area emerges. Finally we show how the phenomena generalises previously studied cases of condensation induced by several constraints and how it is related to interaction-driven condensation which allows us to explain the phenomenon in the framework of large deviation theory.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] RANDOM WALKS IN A QUEUEING NETWORK ENVIRONMENT
    Gannon, M.
    Pechersky, E.
    Suhov, Y.
    Yambartsev, A.
    JOURNAL OF APPLIED PROBABILITY, 2016, 53 (02) : 448 - 462
  • [32] Randomly trapped random walks on Zd
    Cerny, Jiri
    Wassmer, Tobias
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (03) : 1032 - 1057
  • [33] Entropy inequalities for random walks and permutations
    Bristiel, Alexandre
    Caputo, Pietro
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2024, 60 (01): : 54 - 81
  • [34] Analysis of random walks on a hexagonal lattice
    Di Crescenzo, Antonio
    Macci, Claudio
    Martinucci, Barbara
    Spina, Serena
    IMA JOURNAL OF APPLIED MATHEMATICS, 2019, 84 (06) : 1061 - 1081
  • [35] Universal Order Statistics of Random Walks
    Schehr, Gregory
    Majumdar, Satya N.
    PHYSICAL REVIEW LETTERS, 2012, 108 (04)
  • [36] Laws of iterated logarithm for transient random walks in random environments
    Gao, Fuqing
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (04) : 857 - 874
  • [37] Random walks on finite nilpotent groups driven by long-jump measures
    Saloff-Coste, Laurent
    Wang, Yuwen
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [38] Random Walks in Cooling Random Environments
    Avena, Luca
    den Hollander, Frank
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 23 - 42
  • [39] THE EXTREMES OF RANDOM WALKS IN RANDOM SCENERIES
    Franke, Brice
    Saigo, Tatsuhiko
    ADVANCES IN APPLIED PROBABILITY, 2009, 41 (02) : 452 - 468
  • [40] RANDOM WALKS AND DIMENSIONS OF RANDOM TREES
    Konsowa, Mokhtar H.
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2010, 13 (04) : 677 - 689