Conditioned random walks and interaction-driven condensation

被引:9
|
作者
Szavits-Nossan, Juraj [1 ]
Evans, Martin R. [1 ]
Majumdar, Satya N. [2 ,3 ]
机构
[1] Univ Edinburgh, Sch Phys & Astron, SUPA, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Univ Paris Sud 11, Lab Phys Theor & Modeles Stat, UMR 8626, Batiment 100, F-91405 Orsay, France
[3] CNRS, Batiment 100, F-91405 Orsay, France
基金
英国工程与自然科学研究理事会;
关键词
random walk; condensation; large deviations; local time; zero-range process; ZERO-RANGE PROCESS; 1ST-PASSAGE PROPERTIES; STATISTICAL-MECHANICS; AREA; EXCURSION; MODELS; TIME;
D O I
10.1088/1751-8121/50/2/024005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a discrete-time continuous-space random walk under the constraints that the number of returns to the origin (local time) and the total area under the walk are fixed. We first compute the joint probability of an excursion having area a and returning to the origin for the first time after time tau. We then show how condensation occurs when the total area constraint is increased: an excursion containing a finite fraction of the area emerges. Finally we show how the phenomena generalises previously studied cases of condensation induced by several constraints and how it is related to interaction-driven condensation which allows us to explain the phenomenon in the framework of large deviation theory.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Density profiles, dynamics, and condensation in the ZRP conditioned on an atypical current
    Hirschberg, Ori
    Mukamel, David
    Schuetz, Gunter M.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2015,
  • [22] RANDOM-WALKS IN A RANDOM FIELD OF DECAYING TRAPS
    DENHOLLANDER, F
    SHULER, KE
    JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (1-2) : 13 - 31
  • [23] Drift parameter estimation in fractional diffusions driven by perturbed random walks
    Bertin, Karine
    Torres, Soledad
    Tudor, Ciprian A.
    STATISTICS & PROBABILITY LETTERS, 2011, 81 (02) : 243 - 249
  • [24] Random walks on nilpotent groups driven by measures supported on powers of generators
    Saloff-Coste, Laurent
    Zheng, Tianyi
    GROUPS GEOMETRY AND DYNAMICS, 2015, 9 (04) : 1047 - 1129
  • [25] Random Walks with Invariant Loop Probabilities: Stereographic Random Walks
    Montero, Miquel
    ENTROPY, 2021, 23 (06)
  • [26] Zero Range Process and Multi-Dimensional Random Walks
    Bogoliubov, Nicolay M.
    Malyshev, Cyril
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [27] Random walks in a random environment
    Varadhan, SRS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (04): : 309 - 318
  • [28] Random walks in a random environment
    S. R. S. Varadhan
    Proceedings Mathematical Sciences, 2004, 114 : 309 - 318
  • [29] Random walk on random walks
    Hilario, M. R.
    den Hollander, F.
    dos Santos, R. S.
    Sidoravicius, V.
    Teixeira, A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 35
  • [30] Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive
    Croydon, David
    Kumagai, Takashi
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1419 - 1441