Genetically Engineered Bacterial Outer Membrane Vesicles with Expressed Nanoluciferase Reporter for in Vivo Bioluminescence Kinetic Modeling through Noninvasive Imaging

被引:18
作者
Huang, Yikun [1 ]
Beringhs, Andre O'Reilly [2 ]
Chen, Qi [3 ]
Song, Donghui [1 ]
Chen, Wilfred [3 ]
Lu, Xiuling [2 ]
Fan, Tai-Hsi [4 ]
Nieh, Mu-Ping [5 ]
Lei, Yu [1 ,5 ]
机构
[1] Univ Connecticut, Dept Biomed Engn, Storrs, CT 06269 USA
[2] Univ Connecticut, Dept Pharmaceut Sci, Storrs, CT 06269 USA
[3] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[4] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA
[5] Univ Connecticut, Dept Chem & Biomol Engn, Storrs, CT 06269 USA
关键词
outer membrane vesicles; bioluminescence; NanoLuc luciferase; modeling; in vivo reaction kinetics;
D O I
10.1021/acsabm.9b00690
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria play significant roles in the biomedical field as they can be facilely functionalized using genetic engineering tools and thus often serve as a versatile multifunctional nanoparticles for a variety of applications. In this study, we investigated the multifaceted bioluminescence kinetics of a NanoLuc luciferase-expressed outer membrane vesicle produced by E. coli. This multifunctional OMV emits strong blue luminescence at 460 nm after mixing with the substrate furimazine, which potentially can be used for bioluminescence-based optical imaging. Characterization of the vesicles was performed via dynamic light scattering and nanoparticle tracking analysis. A murine animal model was used to observe the in vivo behavior of the bioluminescence produced by outer membrane vesicles through post subcutaneous administration. The bioluminescence signal was tracked by noninvasive in vivo optical imaging, while in vitro cytotoxicity and ex vivo tissue histopathology were studied to demonstrate the biocompatibility of the engineered OMVs. A theoretical model was also developed to simulate the relevant enzyme-substrate reaction kinetics along with absorption of the in vivo system. The interplay of the reaction and absorption is in good agreement with the experimental results. The study shows a great potential of the genetically engineered vesicles as an interesting class of functional nanomaterials for imaging-related biomedical applications.
引用
收藏
页码:5608 / 5615
页数:8
相关论文
共 30 条
[1]   Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T gondii infection [J].
Aline, F ;
Bout, D ;
Amigorena, S ;
Roingeard, P ;
Dimier-Poisson, I .
INFECTION AND IMMUNITY, 2004, 72 (07) :4127-4137
[2]   Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics [J].
Armstrong, James P. K. ;
Holme, Margaret N. ;
Stevens, Molly M. .
ACS NANO, 2017, 11 (01) :69-83
[3]   Delivery of foreign antigens by engineered outer membrane vesicle vaccines [J].
Chen, David J. ;
Osterrieder, Nikolaus ;
Metzger, Stephan M. ;
Buckles, Elizabeth ;
Doody, Anne M. ;
DeLisa, Matthew P. ;
Putnam, David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (07) :3099-3104
[4]   Engineering multi-functional bacterial outer membrane vesicles as modular nanodevices for biosensing and bioimaging [J].
Chen, Qi ;
Rozovsky, Sharon ;
Chen, Wilfred .
CHEMICAL COMMUNICATIONS, 2017, 53 (54) :7569-7572
[5]   NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence [J].
England, Christopher G. ;
Ehlerding, Emily B. ;
Cai, Weibo .
BIOCONJUGATE CHEMISTRY, 2016, 27 (05) :1175-1187
[6]   Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine [J].
Fais, Stefano ;
O'Driscoll, Lorraine ;
Borras, Francesc E. ;
Buzas, Edit ;
Camussi, Giovanni ;
Cappello, Francesco ;
Carvalho, Joana ;
da Silva, Anabela Cordeiro ;
Del Portillo, Hernando ;
El Andaloussi, Samir ;
Trcek, Tanja Ficko ;
Furlan, Roberto ;
Hendrix, An ;
Gursel, Ihsan ;
Kralj-Iglic, Veronika ;
Kaeffer, Bertrand ;
Kosanovic, Maja ;
Lekka, Marilena E. ;
Lipps, Georg ;
Logozzi, Mariantonia ;
Marcilla, Antonio ;
Sammar, Marei ;
Llorente, Alicia ;
Nazarenko, Irina ;
Oliveira, Carla ;
Pocsfalvi, Gabriella ;
Rajendran, Lawrence ;
Raposo, Graca ;
Rohde, Eva ;
Siljander, Pia ;
van Niel, Guillaume ;
Vasconcelos, M. Helena ;
Yanez-Mo, Maria ;
Yliperttula, Marjo L. ;
Zarovni, Natasa ;
Zavec, Apolonija Bedina ;
Giebel, Bernd .
ACS NANO, 2016, 10 (04) :3886-3899
[7]   Extracellular vesicle isolation: present and future [J].
Furi, Istvan ;
Momen-Heravi, Fatemeh ;
Szabo, Gyongyi .
ANNALS OF TRANSLATIONAL MEDICINE, 2017, 5 (12)
[8]   GROWTH-FACTORS IN MAMMALIAN-CELL CULTURE [J].
GOSPODAROWICZ, D ;
MORAN, JS .
ANNUAL REVIEW OF BIOCHEMISTRY, 1976, 45 :531-558
[9]   Bioengineered Bacterial Outer Membrane Vesicles as Cell-Specific Drug-Delivery Vehicles for Cancer Therapy [J].
Gujrati, Vipul ;
Kim, Sunghyun ;
Kim, Sang-Hyun ;
Min, Jung Joon ;
Choy, Hyon E. ;
Kim, Sun Chang ;
Jon, Sangyong .
ACS NANO, 2014, 8 (02) :1525-1537
[10]   Engineered Luciferase Reporter from a Deep Sea Shrimp Utilizing a Novel Imidazopyrazinone Substrate [J].
Hall, Mary P. ;
Unch, James ;
Binkowski, Brock F. ;
Valley, Michael P. ;
Butler, Braeden L. ;
Wood, Monika G. ;
Otto, Paul ;
Zimmerman, Kristopher ;
Vidugiris, Gediminas ;
Machleidt, Thomas ;
Robers, Matthew B. ;
Benink, Helene A. ;
Eggers, Christopher T. ;
Slater, Michael R. ;
Meisenheimer, Poncho L. ;
Klaubert, Dieter H. ;
Fan, Frank ;
Encell, Lance P. ;
Wood, Keith V. .
ACS CHEMICAL BIOLOGY, 2012, 7 (11) :1848-1857