Molecular evolution of cytochrome c oxidase: Rate variation among subunit VIa isoforms

被引:25
作者
Schmidt, TR
Jaradat, SA
Goodman, M
Lomax, MI
Grossman, LI
机构
[1] WAYNE STATE UNIV, CTR MOL MED & GENET, SCH MED, DETROIT, MI 48201 USA
[2] WAYNE STATE UNIV, DEPT ANAT & CELL BIOL, SCH MED, DETROIT, MI 48201 USA
[3] UNIV MICHIGAN, SCH MED, DEPT ANAT & CELL BIOL, ANN ARBOR, MI 48109 USA
关键词
mitochondria; phylogenetics; isoforms; gene duplication;
D O I
10.1093/oxfordjournals.molbev.a025798
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cytochrome c oxidase (COX) consists of 13 subunits, 3 encoded in the mitochondrial genome and 10 in the nucleus. Little is known of the role of the nuclear-encoded subunits, some of which exhibit tissue-specific isoforms. Subunit VIa is unique in having tissue-specific isoforms in all mammalian species examined. We examined relative evolutionary rates for the COX6A heart (H) and liver (L) isoform genes along the length of the molecule, specifically in relation to the tissue-specific function(s) of the two isoforms. Nonsynonymous (amino acid replacement) substitutions in the COX6AH gene occurred more frequently than in the ubiquitously expressed COX6AL gene. Maximum-parsimony analysis and sequence divergences from reconstructed ancestral sequences revealed that after the ancestral COX6A gene duplicated to yield the genes for the H and L isoforms, the sequences encoding the mitochondrial matrix region of the COX VIa protein experienced an elevated rate of nonsynonymous substitutions relative to synonymous substitutions. This is expected for relaxed selective constraints after gene duplication followed by purifying selection to preserve the replacements with tissue-specific functions.
引用
收藏
页码:595 / 601
页数:7
相关论文
共 50 条
[11]   SWITCHING OF BOVINE CYTOCHROME-C-OXIDASE SUBUNIT VIA ISOFORMS IN SKELETAL-MUSCLE DURING DEVELOPMENT [J].
EWART, GD ;
ZHANG, YZ ;
CAPALDI, RA .
FEBS LETTERS, 1991, 292 (1-2) :79-84
[12]   DIFFERENTIAL EXPRESSION OF GENES SPECIFYING 2 ISOFORMS OF SUBUNIT-VIA OF HUMAN CYTOCHROME-C-OXIDASE [J].
FABRIZI, GM ;
SADLOCK, J ;
HIRANO, M ;
MITA, S ;
KOGA, Y ;
RIZZUTO, R ;
ZEVIANI, M ;
SCHON, EA .
GENE, 1992, 119 (02) :307-312
[13]   SEQUENCE OF A CDNA SPECIFYING SUBUNIT-VIA OF HUMAN CYTOCHROME-C OXIDASE [J].
FABRIZI, GM ;
RIZZUTO, R ;
NAKASE, H ;
MITA, S ;
KADENBACH, B ;
SCHON, EA .
NUCLEIC ACIDS RESEARCH, 1989, 17 (15) :6409-6409
[14]  
FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x
[15]   CONSTRUCTION OF PHYLOGENETIC TREES [J].
FITCH, WM ;
MARGOLIASH, E .
SCIENCE, 1967, 155 (3760) :279-+
[16]   Regulation of the H+/e(-) stoichiometry of cytochrome c oxidase from bovine heart by intramitochondrial ATP/ADP ratios [J].
Frank, V ;
Kadenbach, B .
FEBS LETTERS, 1996, 382 (1-2) :121-124
[17]   DECODING THE PATTERN OF PROTEIN EVOLUTION [J].
GOODMAN, M .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1981, 38 (02) :105-164
[18]   THE BIOCHEMICAL PHYLOGENY OF GUINEA-PIGS AND GUNDIS, AND THE PARAPHYLY OF THE ORDER RODENTIA [J].
GRAUR, D ;
HIDE, WA ;
ZHARKIKH, A ;
LI, WH .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B-BIOCHEMISTRY & MOLECULAR BIOLOGY, 1992, 101 (04) :495-498
[19]   IS THE GUINEA-PIG A RODENT [J].
GRAUR, D ;
HIDE, WA ;
LI, WH .
NATURE, 1991, 351 (6328) :649-652
[20]   CLONING, SEQUENCE-ANALYSIS, AND EXPRESSION OF A MOUSE CDNA-ENCODING CYTOCHROME-C-OXIDASE SUBUNIT VIA LIVER ISOFORM [J].
GROSSMAN, LI ;
ROSENTHAL, NH ;
AKAMATSU, M ;
ERICKSON, RP .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1995, 1260 (03) :361-364