Rotating wave solutions of the FitzHugh-Nagumo equations

被引:30
作者
Alford, John G. [1 ]
Auchmuty, Giles
机构
[1] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[2] Natl Sci Fdn, Div Math Sci, Arlington, VA 22230 USA
关键词
rotating waves; bifurcation; action potential; reentrant arrhythmia;
D O I
10.1007/s00285-006-0022-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper will treat the bifurcation and numerical simulation of rotating wave (RW) solutions of the FitzHugh-Nagumo (FHN) equations. These equations are often used as a simple mathematical model of excitable media. The dependence of the solutions on a uniformly applied current, and also on the diffusion coefficients or domain size will be studied. Ranges of applied current and/or diffusion coefficients in which RW solutions are observed will be described using bifurcation theory and continuation methods. The bifurcation of time-periodic solutions of these FHN equations without diffusion is described first. Similar methods are then used to find RW solutions on a circular ring and numerical simulations are described. These results are then extended to investigate RW solutions on annular rings of finite cross-section. Scaling arguments are used to show how the existence of solutions depends on either the diffusion coefficient or on the size of the region.
引用
收藏
页码:797 / 819
页数:23
相关论文
共 27 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS F
[2]   ON THE RESONANCE STRUCTURE IN A FORCED EXCITABLE SYSTEM [J].
ALEXANDER, JC ;
DOEDEL, EJ ;
OTHMER, HG .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (05) :1373-1418
[3]  
ALFORD JG, 2002, THESIS U HOUSTON
[4]  
[Anonymous], INTERDISCIPLINARY AP
[5]  
AUCHMUTY G, 1987, LECT NOTES CONTR INF, V97, P64, DOI 10.1007/BFb0038743
[6]  
AUCHMUTY G, 1996, E W J NUMER MATH, V4, P151
[7]  
Auchmuty J. F. G., 1979, ANN NY ACAD SCI, V316, P263
[8]  
AUCHMUTY JFG, 1976, B MATH BIOL, V38, P325, DOI 10.1016/S0092-8240(76)80015-8
[9]  
AUCHMUTY JFG, 1984, RES NOTES MATH, V101, P35
[10]  
COLLINS C, 1983, T AM MATH SOC, V280, P809