Anisotropic Sobolev embeddings and the speed of propagation for parabolic equations

被引:19
作者
Duzgun, Fatma Gamze [1 ]
Mosconi, Sunra [2 ]
Vespri, Vincenzo [3 ]
机构
[1] Hacettepe Univ, Dept Math, TR-06800 Ankara, Turkey
[2] Univ Catania, Dipartimento Matemat & Informat, Viale A Doria 6, I-95125 Catania, Italy
[3] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
关键词
Anisotropic equations; Finite speed of propagation; L-infinity-estimates; Non-uniqueness; POROUS-MEDIUM EQUATION; SELF-SIMILAR SOLUTIONS; LOCAL BOUNDEDNESS; INITIAL TRACES; CAUCHY-PROBLEM; REGULARITY;
D O I
10.1007/s00028-019-00493-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quasilinear parabolic Cauchy problem with spatial anisotropy of orthotropic type and study the spatial localization of solutions. Assuming that the initial datum is localized with respect to a coordinate having slow diffusion rate, we bound the corresponding directional velocity of the support along the flow. The expansion rate is shown to be optimal for large times.
引用
收藏
页码:845 / 882
页数:38
相关论文
共 33 条
[11]  
Degtyarev S.P., 2012, Journal of Mathematical Sciences, V181, P28
[12]  
Degtyarev SP, 2007, MAT SBORNIK, V198, P46
[13]  
DiBenedetto E, 2012, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4614-1584-8
[14]   ON THE CAUCHY-PROBLEM AND INITIAL TRACES FOR A DEGENERATE PARABOLIC EQUATION [J].
DIBENEDETTO, E ;
HERRERO, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (01) :187-224
[15]   NONNEGATIVE SOLUTIONS OF THE EVOLUTION P-LAPLACIAN EQUATION - INITIAL TRACES AND CAUCHY-PROBLEM WHEN 1-LESS-THAN-P-LESS-THAN-2 [J].
DIBENEDETTO, E ;
HERRERO, MA .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (03) :225-290
[16]   Remarks on Local Boundedness and Local Holder Continuity of Local Weak Solutions to Anisotropic p-Laplacian Type Equations [J].
Dibenedetto E. ;
Gianazza U. ;
Vespri V. .
Journal of Elliptic and Parabolic Equations, 2016, 2 (1-2) :157-169
[17]   Regularity for scalar integrals without structure conditions [J].
Eleuteri, Michela ;
Marcellini, Paolo ;
Mascolo, Elvira .
ADVANCES IN CALCULUS OF VARIATIONS, 2020, 13 (03) :279-300
[18]   LOCAL BOUNDEDNESS OF MINIMIZERS IN A LIMIT CASE [J].
FUSCO, N ;
SBORDONE, C .
MANUSCRIPTA MATHEMATICA, 1990, 69 (01) :19-25
[19]   GROWTH-CONDITIONS AND REGULARITY, A COUNTEREXAMPLE [J].
GIAQUINTA, M .
MANUSCRIPTA MATHEMATICA, 1987, 59 (02) :245-248
[20]   A note on the anisotropic generalizations of the Sobolev and Morrey embedding theorems [J].
Hakovec, Jan ;
Schmeiser, Christian .
MONATSHEFTE FUR MATHEMATIK, 2009, 158 (01) :71-79