Early identification of epilepsy surgery candidates: A multicenter, machine learning study

被引:15
|
作者
Wissel, Benjamin D. [1 ]
Greiner, Hansel M. [2 ,3 ]
Glauser, Tracy A. [2 ,3 ]
Pestian, John P. [1 ,2 ]
Kemme, Andrew J. [4 ]
Santel, Daniel [1 ]
Ficker, David M. [5 ]
Mangano, Francesco T. [2 ,6 ]
Szczesniak, Rhonda D. [2 ,7 ]
Dexheimer, Judith W. [1 ,2 ,4 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, MLC 2008,3333 Burnet Ave, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Coll Med, Dept Pediat, Cincinnati, OH USA
[3] Cincinnati Childrens Hosp Med Ctr, Div Neurol, Cincinnati, OH 45229 USA
[4] Cincinnati Childrens Hosp Med Ctr, Div Emergency Med, Cincinnati, OH 45229 USA
[5] Univ Cincinnati, Dept Neurol & Rehabil Med, Cincinnati, OH USA
[6] Cincinnati Childrens Hosp Med Ctr, Div Neurosurg, Cincinnati, OH 45229 USA
[7] Cincinnati Childrens Hosp Med Ctr, Div Biostat & Epidemiol, Cincinnati, OH 45229 USA
来源
ACTA NEUROLOGICA SCANDINAVICA | 2021年 / 144卷 / 01期
基金
美国医疗保健研究与质量局;
关键词
artificial intelligence; electronic health record; epilepsy; machine learning; medical informatics; neurology; TEMPORAL-LOBE EPILEPSY; HEALTH-CARE COSTS; PRECISION-RECALL; ACCURATE; CURVE;
D O I
10.1111/ane.13418
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objectives Epilepsy surgery is underutilized. Automating the identification of potential surgical candidates may facilitate earlier intervention. Our objective was to develop site-specific machine learning (ML) algorithms to identify candidates before they undergo surgery. Materials & Methods In this multicenter, retrospective, longitudinal cohort study, ML algorithms were trained on n-grams extracted from free-text neurology notes, EEG and MRI reports, visit codes, medications, procedures, laboratories, and demographic information. Site-specific algorithms were developed at two epilepsy centers: one pediatric and one adult. Cases were defined as patients who underwent resective epilepsy surgery, and controls were patients with epilepsy with no history of surgery. The output of the ML algorithms was the estimated likelihood of candidacy for resective epilepsy surgery. Model performance was assessed using 10-fold cross-validation. Results There were 5880 children (n = 137 had surgery [2.3%]) and 7604 adults with epilepsy (n = 56 had surgery [0.7%]) included in the study. Pediatric surgical patients could be identified 2.0 years (range: 0-8.6 years) before beginning their presurgical evaluation with AUC =0.76 (95% CI: 0.70-0.82) and PR-AUC =0.13 (95% CI: 0.07-0.18). Adult surgical patients could be identified 1.0 year (range: 0-5.4 years) before beginning their presurgical evaluation with AUC =0.85 (95% CI: 0.78-0.93) and PR-AUC =0.31 (95% CI: 0.14-0.48). By the time patients began their presurgical evaluation, the ML algorithms identified pediatric and adult surgical patients with AUC =0.93 and 0.95, respectively. The mean squared error of the predicted probability of surgical candidacy (Brier scores) was 0.018 in pediatrics and 0.006 in adults. Conclusions Site-specific machine learning algorithms can identify candidates for epilepsy surgery early in the disease course in diverse practice settings.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [31] Machine learning in orthopaedic surgery
    Lalehzarian, Simon P.
    Gowd, Anirudh K.
    Liu, Joseph N.
    WORLD JOURNAL OF ORTHOPEDICS, 2021, 12 (09): : 685 - 699
  • [32] Machine learning in gastrointestinal surgery
    Sakamoto, Takashi
    Goto, Tadahiro
    Fujiogi, Michimasa
    Lefor, Alan Kawarai
    SURGERY TODAY, 2022, 52 (07) : 995 - 1007
  • [33] Machine learning approaches for imaging-based prognostication of the outcome of surgery for mesial temporal lobe epilepsy
    Sinclair, Benjamin
    Cahill, Varduhi
    Seah, Jarrel
    Kitchen, Andy
    Vivash, Lucy E.
    Chen, Zhibin
    Malpas, Charles B.
    O'Shea, Marie F.
    Desmond, Patricia M.
    Hicks, Rodney J.
    Morokoff, Andrew P.
    King, James A.
    Fabinyi, Gavin C.
    Kaye, Andrew H.
    Kwan, Patrick
    Berkovic, Samuel F.
    Law, Meng
    O'Brien, Terence J.
    EPILEPSIA, 2022, 63 (05) : 1081 - 1092
  • [34] Novel Study for the Early Identification of Injury Risks in Athletes Using Machine Learning Techniques
    Ayala, Rocio Elizabeth Duarte
    Granados, David Perez
    Gutierrez, Carlos Alberto Gonzalez
    Ruiz, Mauricio Alberto Ortega
    Espinosa, Natalia Rojas
    Heredia, Emanuel Canto
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [35] Memory and language risk assessment with Wada test in patients candidates for epilepsy surgery
    Jaramillo-Jimenez, Esteban
    Hoyos-Rubio, Juan D.
    Jimenez-Jaramillo, Marta E.
    Torres-Bustamante, Mariana
    Zapata-Berruecos, Jose F.
    Carvajal-Castrillon, Julian S.
    Yepes-Paz, Juanita
    Rincones-Perez, Jairo R.
    Arboleda-Ramirez, Alejandra
    REVISTA DE NEUROLOGIA, 2024, 78 (11) : 295 - 305
  • [36] Predicting postoperative epilepsy surgery satisfaction in adults using the 19-item Epilepsy Surgery Satisfaction Questionnaire and machine learning
    Josephson, Colin B.
    Engbers, Jordan D. T.
    Sajobi, Tolulope T.
    Wahby, Sandra
    Lawal, Oluwaseyi A.
    Keezer, Mark R.
    Nguyen, Dang K.
    Malmgren, Kristina
    Atkinson, Mark J.
    Hader, Walter J.
    Macrodimitris, Sophia
    Patten, Scott B.
    Pillay, Neelan
    Sharma, Ruby
    Singh, Shaily
    Starreveld, Yves
    Wiebe, Samuel
    EPILEPSIA, 2021, 62 (09) : 2103 - 2112
  • [37] Predicting Employability of Candidates: Comparative Study of Different Machine Learning Models
    Hitharth, K. B. Sai
    Dhanya, N. M.
    PROCEEDINGS OF EMERGING TRENDS AND TECHNOLOGIES ON INTELLIGENT SYSTEMS (ETTIS 2021), 2022, 1371 : 179 - 190
  • [38] Evaluation of a machine learning tool for the early identification of patients with undiagnosed psoriatic arthritis - A retrospective population-based study
    Shapiro, J.
    Getz, B.
    Cohen, S. B.
    Jenudi, Y.
    Underberger, D.
    Dreyfuss, M.
    Ber, T. I.
    Steinberg-Koch, S.
    Ben-Tov, A.
    Shoenfeld, Y.
    Shovman, O.
    JOURNAL OF TRANSLATIONAL AUTOIMMUNITY, 2023, 7
  • [39] Implications of genetic diagnostics in epilepsy surgery candidates: A single-center cohort study
    Sanders, Maurits W. C. B.
    Lemmens, Cynthia M. C.
    Jansen, Floor E.
    Brilstra, Eva H.
    Koeleman, Bobby P. C.
    Braun, Kees P. J.
    EPILEPSIA OPEN, 2019, 4 (04) : 609 - 617
  • [40] Epilepsy surgery candidate identification with artificial intelligence: An implementation study
    Tan, Sheryn
    Goh, Rudy
    Wright, Alexander
    Ng, Jeng Swen
    Hains, Lewis
    Kovoor, Joshua
    Stretton, Brandon
    Booth, Andrew E. C.
    Satheakeerthy, Shrirajh
    Howson, Sarah
    Evans, Shaun
    Gupta, Aashray
    Ovenden, Christopher
    Triplett, James
    Seth, Ishith
    Kelly, Erin
    Kiley, Michelle
    Abou-Hamden, Amal
    Gilbert, Toby
    Maddison, John
    Gluck, Samuel
    Bacchi, Stephen
    JOURNAL OF CLINICAL NEUROSCIENCE, 2025, 135