On the existence of almost contact structure and the contact magnetic field

被引:53
作者
Cabrerizo, J. L. [1 ]
Fernandez, M. [1 ]
Gomez, J. S. [1 ]
机构
[1] Univ Seville, Dept Geometry & Topol, Seville 41080, Spain
关键词
Sasakian manifold; magnetic field; magnetic curve;
D O I
10.1007/s10474-009-9005-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a simple proof of the existence of an almost contact metric structure on any orientable 3-dimensional Riemannian manifold (M (3), g) with the prescribed metric g as the adapted metric of the almost contact metric structure. By using the key formula for the structure tensor obtained in the proof this theorem, we give an application which allows us to completely determine the magnetic flow of the contact magnetic field in any 3-dimensional Sasakian manifold.
引用
收藏
页码:191 / 199
页数:9
相关论文
共 17 条
[1]  
Adachi T., 1996, TSUKUBA J MATH, V20, P225
[2]  
[Anonymous], 2002, RIEMANNIAN GEOMETRY
[3]   The Gauss-Landau-Hall problem on Riemannian surfaces -: art. no. 112905 [J].
Barros, M ;
Romero, A ;
Cabrerizo, JL ;
Fernández, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (11)
[4]   Normal CR structures on compact 3-manifolds [J].
Belgun, FA .
MATHEMATISCHE ZEITSCHRIFT, 2001, 238 (03) :441-460
[5]   VECTOR CROSS PRODUCTS [J].
BROWN, RB ;
GRAY, A .
COMMENTARII MATHEMATICI HELVETICI, 1967, 42 (03) :222-&
[6]   ON THE LANDAU-LEVELS ON THE HYPERBOLIC PLANE [J].
COMTET, A .
ANNALS OF PHYSICS, 1987, 173 (01) :185-209
[7]   VECTOR CROSS PRODUCTS ON MANIFOLDS [J].
GRAY, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 141 (JUL) :465-&
[8]  
HIRZEBRUCH F, 1953, S B BAYER AKAD WI MN, P301
[9]  
Kalinin D. A., 1997, Reports on Mathematical Physics, V39, P299, DOI 10.1016/S0034-4877(97)89750-9
[10]  
Martinet J, 1971, Proceedings of Liverpool Singularities Symposium, V209, P142