Deriving Polarimetry Feature Parameters to Characterize Microstructural Features in Histological Sections of Breast Tissues

被引:57
作者
Dong, Yang [1 ]
Wan, Jiachen [2 ]
Si, Lu [1 ]
Meng, Yixin [3 ]
Dong, Yanmin [4 ]
Liu, Shaoxiong [5 ]
He, Honghui [6 ]
Ma, Hui [1 ,6 ,7 ]
机构
[1] Tsinghua Univ, Ctr Precis Med & Healthcare, Tsinghua Berkeley Shenzhen Inst, Shenzhen 518071, Peoples R China
[2] NYU, Dept Appl Phys, Tandon Sch Engn, New York, NY USA
[3] Rutgers State Univ, Dept Biomed Engn, New Brunswick, NJ USA
[4] Shenzhen Hosp Tradit Chinese Med, Shenzhen, Peoples R China
[5] Nanshan Hosp, Shenzhen Peoples Hosp 6, Shenzhen, Peoples R China
[6] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Guangdong Engn Ctr Polarizat Imaging & Sensing Te, Shenzhen Key Lab Minimal Invas Med Technol, Shenzhen 518055, Peoples R China
[7] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast; Pathology; Polarimetry; Training; Imaging; Cancer; Microstructure; Breast pathological features; LDA classifier; polarimetry feature parameters; quantitative characterization; MUELLER MATRIX; CANCER; OPTIMIZATION; REGISTRATION; BURDEN;
D O I
10.1109/TBME.2020.3019755
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Mueller matrix polarimetry technique has been regarded as a powerful tool for probing the microstructural information of tissues. The multiplying of cells and remodeling of collagen fibers in breast carcinoma tissues have been reported to be related to patient survival and prognosis, and they give rise to observable patterns in hematoxylin and eosin (H&E) sections of typical breast tissues (TBTs) that the pathologist can label as three distinctive pathological features (DPFs)-cell nuclei, aligned collagen, and disorganized collagen. The aim of this paper is to propose a pixel-based extraction approach of polarimetry feature parameters (PFPs) using a linear discriminant analysis (LDA) classifier. These parameters provide quantitative characterization of the three DPFs in four types of TBTs. Methods: The LDA-based training method learns to find the most simplified linear combination from polarimetry basis parameters (PBPs) constrained under the accuracy remains constant to characterize the specific microstructural feature quantitatively in TBTs. Results: We present results from a cohort of 32 clinical patients with analysis of 224 regions-of-interest. The characterization accuracy for PFPs ranges from 0.82 to 0.91. Conclusion: This work demonstrates the ability of PFPs to quantitatively characterize the DPFs in the H&E pathological sections of TBTs. Significance: This technique paves the way for automatic and quantitative evaluation of specific microstructural features in histopathological digitalization and computer-aided diagnosis.
引用
收藏
页码:881 / 892
页数:12
相关论文
共 53 条
  • [1] Armi L., 2019, Texture image analysis and texture classification methods - A review, V2, P1, DOI DOI 10.48550/ARKXIV.1904.06554
  • [3] Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies
    Bejnordi, Babak Ehteshami
    Mullooly, Maeve
    Pfeiffer, Ruth M.
    Fan, Shaoqi
    Vacek, Pamela M.
    Weaver, Donald L.
    Herschorn, Sally
    Brinton, Louise A.
    van Ginneken, Bram
    Karssemeijer, Nico
    Beck, Andrew H.
    Gierach, Gretchen L.
    van der Laak, Jeroen A. W. M.
    Sherman, Mark E.
    [J]. MODERN PATHOLOGY, 2018, 31 (10) : 1502 - 1512
  • [4] Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology
    Bera, Kaustav
    Schalper, Kurt A.
    Rimm, David L.
    Velcheti, Vamsidhar
    Madabhushi, Anant
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2019, 16 (11) : 703 - 715
  • [5] Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression
    Bissell, Mina J.
    Hines, William C.
    [J]. NATURE MEDICINE, 2011, 17 (03) : 320 - 329
  • [6] A tense situation: forcing tumour progression
    Butcher, Darci T.
    Alliston, Tamara
    Weaver, Valerie M.
    [J]. NATURE REVIEWS CANCER, 2009, 9 (02) : 108 - 122
  • [7] Cervical cancer
    Cohen, Paul A.
    Jhingran, Anjua
    Oaknin, Ana
    Denny, Lynette
    [J]. LANCET, 2019, 393 (10167) : 169 - 182
  • [8] Aligned Collagen Is a Prognostic Signature for Survival in Human Breast Carcinoma
    Conklin, Matthew W.
    Eickhoff, Jens C.
    Riching, Kristin M.
    Pehlke, Carolyn A.
    Eliceiri, Kevin W.
    Provenzano, Paolo P.
    Friedl, Andreas
    Keely, Patricia J.
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2011, 178 (03) : 1221 - 1232
  • [9] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [10] Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer
    Cox, Thomas R.
    Erler, Janine T.
    [J]. DISEASE MODELS & MECHANISMS, 2011, 4 (02) : 165 - 178