The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice

被引:188
作者
Shen, Yue [1 ]
Shen, Like [1 ]
Shen, Zhenxing [1 ]
Jing, Wen [1 ]
Ge, Hongliang [1 ]
Zhao, Jiangzhe [1 ]
Zhang, Wenhua [1 ]
机构
[1] Nanjing Agr Univ, Coll Life Sci, State Key Lab Crop Genet & Germplasm Enhancement, Nanjing 210095, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
HAK transporter; Na+; K+ homeostasis; salinity stress; Oryza sativa; K+ TRANSPORT; PLANT-GROWTH; TOS17; RETROTRANSPOSON; SALINITY STRESS; GENE FAMILY; ARABIDOPSIS; EXPRESSION; NA+; SODIUM; MECHANISMS;
D O I
10.1111/pce.12586
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The intracellular potassium (K+) homeostasis, which is crucial for plant survival in saline environments, is modulated by K+ channels and transporters. Some members of the high-affinity K+ transporter (HAK) family are believed to function in the regulation of plant salt tolerance, but the physiological mechanisms remain unclear. Here, we report a significant inducement of OsHAK21 expression by high-salinity treatment and provide genetic evidence of the involvement of OsHAK21 in rice salt tolerance. Disruption of OsHAK21 rendered plants sensitive to salt stress. Compared with the wild type, oshak21 accumulated less K+ and considerably more Na+ in both shoots and roots, and had a significantly lower K+ net uptake rate but higher Na+ uptake rate. Our analyses of subcellular localizations and expression patterns showed that OsHAK21 was localized in the plasma membrane and expressed in xylem parenchyma and individual endodermal cells (putative passage cells). Further functional characterizations of OsHAK21 in K+ uptake-deficient yeast and Arabidopsis revealed that OsHAK21 possesses K+ transporter activity. These results demonstrate that OsHAK21 may mediate K+ absorption by the plasma membrane and play crucial roles in the maintenance of the Na+/K+ homeostasis in rice under salt stress.
引用
收藏
页码:2766 / 2779
页数:14
相关论文
共 68 条
[1]   Transport, signaling, and homeostasis of potassium and sodium in plants [J].
Adams, Eri ;
Shin, Ryoung .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2014, 56 (03) :231-249
[2]   Expression of KT/KUP genes in arabidopsis and the role of root hairs in K+ uptake [J].
Ahn, SJ ;
Shin, R ;
Schachtman, DP .
PLANT PHYSIOLOGY, 2004, 134 (03) :1135-1145
[3]  
Amtmann A, 1999, ADV BOT RES, V29, P75
[4]   The wheat cDNA LCT1 generates hypersensitivity to sodium in a salt-sensitive yeast strain [J].
Amtmann, A ;
Fischer, M ;
Marsh, EL ;
Stefanovic, A ;
Sanders, D ;
Schachtman, DP .
PLANT PHYSIOLOGY, 2001, 126 (03) :1061-1071
[5]   Regulation of macronutrient transport [J].
Amtmann, Anna ;
Blatt, Michael R. .
NEW PHYTOLOGIST, 2009, 181 (01) :35-52
[6]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[7]   Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment [J].
Anschutz, Uta ;
Becker, Dirk ;
Shabala, Sergey .
JOURNAL OF PLANT PHYSIOLOGY, 2014, 171 (09) :670-687
[8]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[9]   Inventory and functional characterization of the HAK potassium transporters of rice [J].
Bañuelos, MA ;
Garciadeblas, B ;
Cubero, B ;
Rodríguez-Navarro, A .
PLANT PHYSIOLOGY, 2002, 130 (02) :784-795
[10]   Cellular ion homeostasis: emerging roles of intracellular NHX Na/H antiporters in plant growth and development [J].
Bassil, Elias ;
Coku, Ardian ;
Blumwald, Eduardo .
JOURNAL OF EXPERIMENTAL BOTANY, 2012, 63 (16) :5727-5740