Contravariant finiteness and pure semisimple rings

被引:0
作者
Dung, Nguyen Viet [1 ]
机构
[1] Ohio Univ, Dept Math, Zanesville, OH 43701 USA
来源
ALGEBRA AND ITS APPLICATIONS | 2006年 / 419卷
关键词
contravariantly finite subcategory; pure semisimple ring; ring of finite representation type;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the left pure semisimplicity of a left artinian ring can be characterized by the contravariant finiteness of subcategories of finitely generated left R-modules. Various criteria, in terms of the contravariant and covariant finiteness conditions, are obtained for a left pure semisimple ring to be of finite representation type. As an application of our methods, it is shown that a ring R is of finite representation type if and only if every right R-module is both finitely generated and finitely cogenerated over its endomorphism ring.
引用
收藏
页码:111 / 124
页数:14
相关论文
共 35 条
[1]  
Anderson F. W., 1992, GRADUATE TEXTS MATH, V13
[2]  
ANGELERI HL, 1999, LECT NOTES PURE APPL, V224, P1
[3]   APPLICATIONS OF CONTRAVARIANTLY FINITE SUBCATEGORIES [J].
AUSLANDER, M ;
REITEN, I .
ADVANCES IN MATHEMATICS, 1991, 86 (01) :111-152
[4]   PREPROJECTIVE MODULES OVER ARTIN ALGEBRAS [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1980, 66 (01) :61-122
[5]  
Auslander M., 1974, Commun. Algebra, V1, P177, DOI [10.1080/00927877409412807, DOI 10.1080/00927877409412807]
[6]  
Auslander Maurice, 1978, Lecture Notes in Pure Appl. Math., V37, P1
[7]  
CRAWLEYBOEVEY W, 1991, P LOND MATH SOC, V63, P241
[8]  
CRAWLEYBOEVEY W, 1994, COMMUN ALGEBRA, V22, P1644
[9]   Endofinite modules and pure semisimple rings [J].
Dung, NV ;
García, JL .
JOURNAL OF ALGEBRA, 2005, 289 (02) :574-593
[10]   Copure semisimple categories and almost split maps [J].
Dung, NV ;
García, JL .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 188 (1-3) :73-94