Control of the production of Saccharomyces cerevisiae on the basis of a reduced metabolic model

被引:6
|
作者
Wegerhoff, Sven [1 ]
Engell, Sebastian [1 ]
机构
[1] Tech Univ Dortmund, Emil Figge Str 70, D-44227 Dortmund, Germany
来源
IFAC PAPERSONLINE | 2016年 / 49卷 / 26期
关键词
Yeast; Saccharomyces cerevisiae; Biosystem; Dynamic Flux Balance Analysis; Crabtree effect; Model Predictive Control; Metabolic engineering; Switched model; CAPACITY; GROWTH;
D O I
10.1016/j.ifacol.2016.12.126
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Saccharomyces cerevisiae is a species of yeast with a long tradition in human history and a growing demand in industry and research. The yeast cells are produced in a series of fed batch reactors which are fed with oxygen and glucose as the main carbon source. One problem during the production process is that the cell culture can switch to the undesired production of ethanol leading to a lost batch. For improving the production process a suitable modeling and control strategy is needed that should cover the switch to ethanol production and should be able to describe the growth of the cell culture so that the operating policies can be optimized. This work presents a novel method that uses dynamic flux balance analysis to derive a reduced metabolic model from a full biochemical stoichiometric network which is then used within a model predictive control. The reduced metabolic model covers the gene regulation by using the redox metabolites as key regulators. It is shown that this modeling approach is very flexible and can be used to control and to monitor the process. (C) 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:201 / 206
页数:6
相关论文
共 50 条
  • [1] Metabolic engineering of Saccharomyces cerevisiae for production of chemicals
    Borodina, Irina
    YEAST, 2015, 32 : S246 - S246
  • [2] Metabolic engineering of Saccharomyces cerevisiae for pinene production
    Chen T.
    Zhang R.
    Jiang G.
    Yao M.
    Liu H.
    Wang Y.
    Xiao W.
    Yuan Y.
    Huagong Xuebao/CIESC Journal, 2019, 70 (01): : 179 - 188
  • [3] Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides
    Dai, Zhubo
    Liu, Yi
    Zhang, Xianan
    Shi, Mingyu
    Wang, Beibei
    Wang, Dong
    Huang, Luqi
    Zhang, Xueli
    METABOLIC ENGINEERING, 2013, 20 : 146 - 156
  • [4] Metabolic Engineering of Saccharomyces cerevisiae for Isoprenoid Production
    Tippmann, Stefan
    Khoomrung, Sakda
    Siewers, Verena
    Nielsen, Jens
    NEW BIOTECHNOLOGY, 2014, 31 : S165 - S165
  • [5] Metabolic engineering of Saccharomyces cerevisiae for alkaloid production
    Smolke, Christina Dawn
    FASEB JOURNAL, 2012, 26
  • [6] Metabolic engineering of glycerol production in Saccharomyces cerevisiae
    Overkamp, KM
    Bakker, BM
    Kötter, P
    Luttik, MAH
    van Dijken, JP
    Pronk, JT
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (06) : 2814 - 2821
  • [7] Metabolic engineering of Saccharomyces cerevisiae for linalool production
    Pegah Amiri
    Azar Shahpiri
    Mohammad Ali Asadollahi
    Fariborz Momenbeik
    Siavash Partow
    Biotechnology Letters, 2016, 38 : 503 - 508
  • [8] Metabolic engineering of Saccharomyces cerevisiae for linalool production
    Amiri, Pegah
    Shahpiri, Azar
    Asadollahi, Mohammad Ali
    Momenbeik, Fariborz
    Partow, Siavash
    BIOTECHNOLOGY LETTERS, 2016, 38 (03) : 503 - 508
  • [9] Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers
    Generoso, Wesley Cardoso
    Schadeweg, Virginia
    Oreb, Mislav
    Boles, Eckhard
    CURRENT OPINION IN BIOTECHNOLOGY, 2015, 33 : 1 - 7
  • [10] Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae
    Pirkov, I.
    Albers, E.
    Norbeck, J.
    Larsson, C.
    METABOLIC ENGINEERING, 2008, 10 (05) : 276 - 280