A Fixed Point Theorem and Equivariant Points for Set-valued Mappings

被引:2
作者
Shitanda, Yoshimi [1 ]
机构
[1] Meiji Univ, Suginami Ku, Tokyo 1688555, Japan
关键词
D O I
10.2977/prims/1249478966
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a proof of a, coincidence theorem for a Vietoris mapping and a compact mapping and prove the Lefschetz fixed point; theorem for the class of admissible mappings which contains upper semi-continuous acyclic mappings. When a source space is a, paracompact Hausdorff space with a free involution and a target space is a closed topological manifold with an involution, the existence of equivariant points is proved for the class of admissible mappings under some conditions. When a source space is a Poincare space with a finite covering dimension, the covering dimension of the set of equivariant points is determined.
引用
收藏
页码:811 / 844
页数:34
相关论文
共 18 条
  • [1] [Anonymous], 1981, Algebraic topology
  • [2] [Anonymous], 1952, FDN ALGEBRAIC TOPOLO, DOI DOI 10.1515/9781400877492
  • [3] FIXED POINT THEOREMS FOR MULTI-VALUED TRANSFORMATIONS
    EILENBERG, S
    MONTGOMERY, D
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1946, 68 (02) : 214 - 222
  • [4] Engelking R, 1989, Sigma Series in Pure Mathematics, V6
  • [5] GEBA K, 1986, B POLISH ACAD SCI MA, V34, P315
  • [6] GORNIEWICZ L, 1973, B ACAD POL SCI SMAP, V21, P983
  • [7] GORNIEWICZ L, 1975, FUND MATH, V88, P103
  • [8] Gorniewicz L., 1999, Topological Fixed Point Theory of Multivalued Mappings
  • [9] Granas A., 2003, SPRINGER MG MATH
  • [10] Hanai S., 1956, P JAPAN ACAD, V32, P388, DOI [10.3792/pja/1195525337, DOI 10.3792/PJA/1195525337]