Existence of positive pseudo-almost-periodic solution for some nonlinear infinite delay integral equations arising in epidemic problems

被引:38
作者
Dads, EA [1 ]
Ezzinbi, K [1 ]
机构
[1] Univ Cadi Ayyad, Fac Sci, Dept Math, Marrakech, Morocco
关键词
delay integral equation; pseudo-almost-periodic solution; Hilbert's projective metric;
D O I
10.1016/S0362-546X(98)00219-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear infinite delay integral equation: x(t) = ∫-∞t a(t-s)f(s,x(s))ds, where f is pseudo-almost periodic with values in R, is analyzed. The problem of existence of pseudo-almost periodic solutions which are nonnegative are considered. Results and theorem are discussed.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 19 条
[11]  
GUO D, 1988, J MATH ANAL APPL, V134, P143
[12]  
KAPLAN JL, 1979, NONLINEAR ANAL, V3, P53
[13]  
LEGGET R, 1983, SIAM J MATH ANAL, V33, P112
[14]  
NUSSBAUM R, 1988, MEMORY AM MATH SOC M, V75
[15]  
Smith H.L., 1981, FUNKCIAL EKUUC, V24, P141
[16]  
THOMPSON A., 1963, Proc. Amer. Math. Soc., V14, P438
[17]   POSITIVE ALMOST-PERIODIC SOLUTIONS OF A STATE-DEPENDENT DELAY NONLINEAR INTEGRAL-EQUATION [J].
TORREJON, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (12) :1383-1416
[18]   EXISTENCE OF PERIODIC-SOLUTIONS TO INTEGRODIFFERENTIAL EQUATIONS OF NEUTRAL TYPE VIA LIMITING EQUATIONS [J].
WU, JH ;
XIA, HX .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 112 :403-418
[19]   PSEUDO ALMOST-PERIODIC SOLUTIONS OF SOME DIFFERENTIAL-EQUATIONS [J].
ZHANG, CY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 181 (01) :62-76