Existence of positive pseudo-almost-periodic solution for some nonlinear infinite delay integral equations arising in epidemic problems

被引:38
作者
Dads, EA [1 ]
Ezzinbi, K [1 ]
机构
[1] Univ Cadi Ayyad, Fac Sci, Dept Math, Marrakech, Morocco
关键词
delay integral equation; pseudo-almost-periodic solution; Hilbert's projective metric;
D O I
10.1016/S0362-546X(98)00219-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear infinite delay integral equation: x(t) = ∫-∞t a(t-s)f(s,x(s))ds, where f is pseudo-almost periodic with values in R, is analyzed. The problem of existence of pseudo-almost periodic solutions which are nonnegative are considered. Results and theorem are discussed.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 19 条
[1]  
Ait Dads E., 1996, J FACTA U SER MATH I, P79
[2]  
Buzenberg S., 1979, APPL NONLINEAR ANAL, P67
[3]   PERIODICITY THRESHOLD THEOREM FOR EPIDEMICS AND POPULATION-GROWTH [J].
COOKE, KL ;
KAPLAN, JL .
MATHEMATICAL BIOSCIENCES, 1976, 31 (1-2) :87-104
[4]  
CORDUNEANU C, 1989, PERIODIC FUNCTIONS
[5]  
DADS EA, 1994, J CYBERNETICS, P133
[6]  
DADS EA, 1994, THESIS U CADI AYYAD
[7]  
DADS EA, 1996, J NONLINEAR STUDIES, V3, P85
[8]  
DEIMLING K, 1985, NONLINEAR ANAL
[9]   Existence of positive almost periodic solutions of functional equations via Hilbert's projective metric [J].
Ezzinbi, K ;
Hachimi, MA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (06) :1169-1176
[10]   POSITIVE ALMOST PERIODIC-SOLUTIONS OF SOME DELAY INTEGRAL-EQUATIONS [J].
FINK, AM ;
GATICA, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :166-178