Iterative phase estimation

被引:13
作者
O'Loan, C. J. [1 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM; ENTANGLEMENT; GEOMETRY; CHANNELS;
D O I
10.1088/1751-8113/43/1/015301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an iterative algorithm for phase estimation of a parameter., which is within a logarithmic factor of the Heisenberg limit. Unlike other methods, we do not need any entanglement or an extra rotation gate which can perform arbitrary rotations with almost perfect accuracy: only a single copy of the unitary channel and basic measurements are needed. Simulations show that the algorithm is successful. We also look at iterative phase estimation when depolarizing noise is present. It is seen that the algorithm is still successful provided the number of iterative stages is below a certain threshold.
引用
收藏
页数:15
相关论文
共 25 条
[1]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[2]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[3]   Quantum information and precision measurement [J].
Childs, Andrew M. ;
Preskill, John ;
Reness, Joseph .
Journal of Modern Optics, 2000, 47 (2-3 SPEC.) :155-176
[4]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[5]   Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement [J].
de Burgh, M ;
Bartlett, SD .
PHYSICAL REVIEW A, 2005, 72 (04)
[6]   Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit:: A two-qubit benchmark [J].
Dobsicek, Miroslav ;
Johansson, Goran ;
Shumeiko, Vitaly ;
Wendin, Goran .
PHYSICAL REVIEW A, 2007, 76 (03)
[7]   Quantum phase estimation algorithm in presence of static imperfections [J].
Garcia-Mata, I. ;
Shepelyansky, D. L. .
EUROPEAN PHYSICAL JOURNAL D, 2008, 47 (01) :151-155
[8]   Quantum-enhanced measurements: Beating the standard quantum limit [J].
Giovannetti, V ;
Lloyd, S ;
Maccone, L .
SCIENCE, 2004, 306 (5700) :1330-1336
[9]   Parallel treatment of estimation of SU(2) and phase estimation [J].
Hayashi, Masahito .
PHYSICS LETTERS A, 2006, 354 (03) :183-189
[10]   Entanglement-free heisenberg-limited phase estimation [J].
Higgins, B. L. ;
Berry, D. W. ;
Bartlett, S. D. ;
Wiseman, H. M. ;
Pryde, G. J. .
NATURE, 2007, 450 (7168) :393-U5