PLASMON-ENHANCED ABSORPTION AND PHOTOCURRENT IN ULTRATHIN GaAs SOLAR CELLS WITH METALLIC NANOSTRUCTURES

被引:1
作者
Tanabe, Katsuaki [1 ]
Nakayama, Keisuke [1 ]
Atwater, Harry A. [1 ]
机构
[1] CALTECH, Thomas J Watson Lab Appl Phys, Pasadena, CA 91125 USA
来源
PVSC: 2008 33RD IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, VOLS 1-4 | 2008年
关键词
D O I
10.1109/PVSC.2008.4922457
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Metallic nanostructures can excite surface plasmons and can dramatically increase the optical path length in thin active photovoltaic layers to enhance overall photoabsorption. This effect has potential for cost and weight reduction with thinned layers and also for efficiency enhancement associated with increased carrier excitation level in the absorber layer. We have observed short-circuit current and efficiency enhancements under AM1.5G solar spectrum for GaAs cells with dense arrays of Ag nanoparticles deposited through porous alumina membrane masks, relative to reference GaAs cells with no metal nanoparticle array. This photocurrent enhancement is attributed to the scattering effects of metal nanoparticles for light incident into photovoltaic layers. A simple optical model representing metal nanoparticle surface plasmon resonances and multi-angle scattering has been developed and well explains the spectral behavior of the experimental photocurrent enhancement. A novel ultrathin GaAs cell structure with a metallic back layer has been also developed with a bonding and layer transfer technique. This waveguide-like GaAs cell showed significant enhancements in short-circuit current density and efficiency relative to reference GaAs cells with an absorbing GaAs back layer due to a Fabry-Perot resonance in the air/semiconductor/meta heterostructure.
引用
收藏
页码:491 / 494
页数:4
相关论文
共 50 条
[21]   Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode [J].
Lee, Eungkyu ;
Kim, Changsoon .
OPTICS EXPRESS, 2012, 20 (19) :A740-A753
[22]   Metallic Heterostructures for Plasmon-Enhanced Electrocatalysis [J].
Wu, Fengxia ;
Xia, Shiyu ;
Wei, Jinping ;
Gao, Wenping ;
Li, Fenghua ;
Niu, Wenxin .
CHEMPHYSCHEM, 2023, 24 (15)
[23]   Diffractive coupling and plasmon-enhanced photocurrent generation in silicon [J].
Uhrenfeldt, C. ;
Villesen, T. F. ;
Johansen, B. ;
Jung, J. ;
Pedersen, T. G. ;
Larsen, A. Nylandsted .
OPTICS EXPRESS, 2013, 21 (18) :A774-A785
[24]   Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study [J].
Dawi, E. A. ;
Karar, A. A. ;
Mustafa, E. ;
Nur, O. .
NANOSCALE RESEARCH LETTERS, 2021, 16 (01)
[25]   Plasmon-enhanced light absorption of thin-film solar cells using hemispherical nanoparticles [J].
Alemu, Negash ;
Chen, Fuyi .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (01) :213-218
[26]   Recent advances in plasmon-enhanced Raman spectroscopy for catalytic reactions on bifunctional metallic nanostructures [J].
Su, Hai-Sheng ;
Feng, Hui-Shu ;
Wu, Xiang ;
Sun, Juan-Juan ;
Ren, Bin .
NANOSCALE, 2021, 13 (33) :13962-13975
[27]   Plasmon-Enhanced Photoluminescence from Metal Nanostructures [J].
Shahbazyan, T. V. .
2013 7TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2013), 2013, :316-318
[28]   Arrays of Metal Nanostructures for Plasmon-enhanced Spectroscopy [J].
Milekhin, A. G. ;
Kuznetsov, S. A. ;
Rodyakina, E. E. ;
Anikin, K. V. ;
Milekhin, I. A. ;
Veber, S. L. ;
Latyshev, A. V. ;
Zahn, D. R. T. .
METANANO 2019, 2020, 1461
[29]   Plasmon-Enhanced Light Absorption in (p-i-n) Junction GaAs Nanowire Solar Cells: An FDTD Simulation Method Study [J].
E. A. Dawi ;
A. A. Karar ;
E. Mustafa ;
O. Nur .
Nanoscale Research Letters, 16
[30]   Plasmon-enhanced absorption in heterojunction n-ZnOnanorods/p-Si solar cells [J].
Wrobel, P. ;
Pietruszka, R. ;
Ciesielski, A. ;
Ozga, M. ;
Witkowski, B. S. ;
Sobczak, K. ;
Borysiuk, J. ;
Godlewski, M. ;
Szoplik, T. .
METAMATERIALS XII, 2019, 11025