Spectral radii of graphs with given chromatic number

被引:37
作者
Feng, Lihua [1 ]
Li, Qiao [1 ]
Zhang, Xiao-Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
chromatic number; spectral radius;
D O I
10.1016/j.aml.2005.11.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the set G(n,k) of graphs of order n with the chromatic number k >= 2. In this note, we prove that in G(n,k) the Turan graph T-n,T-k has the maximal spectral radius; and P-n if k = 2, C-n if k = 3 and n is odd, C-n-1(1) if k = 3 and n is even, K-k((l)) if k >= 4 has the minimal spectral radius. Thus we answer a problem raised by Cao [D.S. Cao, Index function of graphs, J. East China Norm. Univ. Sci. Ed. 4 (1987) 1-8 (in Chinese). MR89m:05084] and Hong [Y. Hong, Bounds of eigenvalues of graphs, Discrete Math. 123 (1993) 65-74] in the affirmative. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:158 / 162
页数:5
相关论文
共 11 条
[1]  
BOLLOBAS B, 1978, EXTREMAL GRAPH THEOR, pCH5
[2]   On colouring the nodes of a network [J].
Brooks, RL .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 :194-197
[3]  
Cao DS, 1998, LINEAR ALGEBRA APPL, V270, P1
[4]  
CAO DS, 1987, J E CHINA NORM U SCI, V4, P1
[5]  
CVETKOVIC D, 1997, EIGENSPACES GRAPHS
[6]  
Cvetkovic D. M., 1980, Spectra of Graphs-Theory and Application
[7]   LOWER BOUNDS FOR THE CLIQUE AND THE CHROMATIC-NUMBERS OF A GRAPH [J].
EDWARDS, CS ;
ELPHICK, CH .
DISCRETE APPLIED MATHEMATICS, 1983, 5 (01) :51-64
[8]   BOUNDS OF EIGENVALUES OF GRAPHS [J].
HONG, Y .
DISCRETE MATHEMATICS, 1993, 123 (1-3) :65-74
[9]  
KRIVELEVICH M, 1998, ELECTRON J COMB, V1, pR4
[10]  
Li Qiao, 1979, Acta Mathematicae Applacatae Sinica, V2, P167