MULTISPECTRAL-LIDAR DATA FUSION VIA MULTIPLE KERNEL LEARNING FOR REMOTE SENSING CLASSIFICATION

被引:0
作者
Wang, Yukun [1 ]
Gu, Yanfeng [1 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin, Heilongjiang, Peoples R China
来源
2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2018年
关键词
Classification; Multispectral LiDAR; Data Fusion; Multiple Kernel Learning (MKL); Support Vector Machine (SVM);
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The airborne multispectral LiDAR system can simultaneously acquire the spatial, spectral and elevation features of the surface, making it an advanced method to acquire geometry spectral and elevation data at the same space and time. In order to represent and fuse the multispectral LiDAR data effectively, we research on two kernel feature structures, both of which utilize the provided features and fuse them by different Multiple Kernel Learning (MKL) methods to form the basic kernels. Instead of directly stacking multidimensional features as a single feature to generate multiple kernel matrices by altering the kernel parameter (FS-MKL), Feature-Based MKL (FB-MKL) is used to form the combined kernel. With a fixed kernel parameter, FB-MKL firstly generates basic kernels according to each feature space by Single-Kernel (SK) method, and then applies the state-of-the-art kernel learning methods to align the generated kernels to project the features for linear SVM classifier. To prove the validity of the model, we exploit Single Kernel (SK) and several MKL methods to conduct the classification experiments with a real airborne Multispectral LiDAR data set. The result shows that the aforementioned FB-MKL model suits multispectral LiDAR data features and achieve higher classification precision compared with the existing FS-MKL model.
引用
收藏
页数:6
相关论文
共 8 条
  • [1] A new expert system module for building detection in urban areas using spectral information and LIDAR data
    Elshehaby, Ayman Rashad
    Taha, Lamyaa Gamal El-deen
    [J]. APPLIED GEOMATICS, 2009, 1 (04) : 97 - 110
  • [2] Gönen M, 2011, J MACH LEARN RES, V12, P2211
  • [3] A Novel MKL Model of Integrating LiDAR Data and MSI for Urban Area Classification
    Gu, Yanfeng
    Wang, Qingwang
    Jia, Xiuping
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (10): : 5312 - 5326
  • [4] Object-based analysis of multispectral airborne laser scanner data for land cover classification and map updating
    Matikainen, Leena
    Karila, Kirsi
    Hyyppa, Juha
    Litkey, Paula
    Puttonen, Eetu
    Ahokas, Eero
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 128 : 298 - 313
  • [5] Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data
    Puttonen, Eetu
    Jaakkola, Anttoni
    Litkey, Paula
    Hyyppa, Juha
    [J]. SENSORS, 2011, 11 (05) : 5158 - 5182
  • [6] Rakotomamonjy A, 2008, J MACH LEARN RES, V9, P2491
  • [7] Learning Relevant Image Features With Multiple-Kernel Classification
    Tuia, Devis
    Camps-Valls, Gustavo
    Matasci, Giona
    Kanevski, Mikhail
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (10): : 3780 - 3791
  • [8] Discriminative Multiple Kernel Learning for Hyperspectral Image Classification
    Wang, Qingwang
    Gu, Yanfeng
    Tuia, Devis
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (07): : 3912 - 3927