Design of Fast Transient Response Voltage-Mode Buck Converter With Hybrid Feedforward and Feedback Technique

被引:18
作者
Li, Sizhen [1 ]
Yu, Kai [1 ]
Zhang, Gary [1 ]
Sin, Sai Weng [2 ,3 ]
Zou, Xuecheng [4 ]
Zou, Qiming [5 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou 510006, Peoples R China
[2] Univ Macau, State Key Lab Analog & Mixed Signal VLSI, Taipa 999078, Macao, Peoples R China
[3] Univ Macau, Dept Elect & Comp Engn, Taipa 999078, Macao, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan 430074, Peoples R China
[5] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
基金
中国国家自然科学基金;
关键词
Fast transient response; hybrid feedforward and feedback technique (HFFT); on-chip proportional-integral-differential (PID) compensation; voltage-mode (VM) buck converter;
D O I
10.1109/JESTPE.2019.2963415
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For a voltage-mode buck converter, to improve the transient response and reduce the size of the proportional-integral-differential (PID) compensation network, a hybrid feedforward and feedback technique (HFFT) is presented in this article. First, the HFFT utilizes the input voltage feedforward, the output voltage feedback, and the duty-ratio feedback to achieve fast line and load transient responses simultaneously. Second, the converter system is comprised of two feedback loops. One outer loop employs a voltage feedback control and provides a phase lead (PD) element. The other inner loop uses a duty-ratio feedback control and produces a phase lag (PI) element. Then adopting the PD and PI elements, a proposed implementation of PID compensation with small on-chip components can also be obtained. A buck converter chip with the HFFT has been fabricated in 0.18-mu m 1.8/5-V CMOS technology. Measurement results show that the output voltage of the buck converter is almost invariant under a line voltage step of 1.5 V and settled within 4.5 mu s for a load current step of 500 mA.
引用
收藏
页码:780 / 790
页数:11
相关论文
共 22 条
[1]   Fully Integrated Digital Average Current-Mode Control Voltage Regulator Module IC [J].
Abramov, Eli ;
Vekslender, Timur ;
Kirshenboim, Or ;
Peretz, Mor Mordechai .
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2018, 6 (02) :485-499
[2]   Fast Output Voltage-Regulated PWM Buck Converter With an Adaptive Ramp Amplitude Control [J].
Chang, Ji-Soo ;
Oh, Hyoung-Seok ;
Jun, Young-Hyun ;
Kong, Bai-Sun .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2013, 60 (10) :712-716
[3]   A High-Efficiency Positive Buck-Boost Converter With Mode-Select Circuit and Feed-Forward Techniques [J].
Chen, Jiann-Jong ;
Shen, Pin-Nan ;
Hwang, Yuh-Shyan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (09) :4240-4247
[4]  
Chen K.-H., 2016, Power Management Techniques for Integrated Circuit Design: Chen/Power Management Techniques for Integrated Circuit Design
[5]   A Novel Quick Response of RBCOT With VIC Ripple for Buck Converter [J].
Chen, Wen-Wei ;
Chen, Jiann-Fuh ;
Liang, Tsorng-Juu ;
Wei, Lu-Chi ;
Huang, Jian-Rong ;
Ting, Wei-Yuan .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (09) :4299-4307
[6]   A 10/30 MHz Fast Reference-Tracking Buck Converter With DDA-Based Type-III Compensator [J].
Cheng, Lin ;
Liu, Yonggen ;
Ki, Wing-Hung .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (12) :2788-2799
[7]  
Erickson R. W., 2001, Fundamentals of power electronics, V2nd
[8]   Hybrid Buck-Boost Feedforward and Reduced Average Inductor Current Techniques in Fast Line Transient and High-Efficiency Buck-Boost Converter [J].
Huang, Ping-Ching ;
Wu, Wei-Quan ;
Ho, Hsin-Hsin ;
Chen, Ke-Horng .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2010, 25 (03) :719-730
[9]   A High-Efficiency Fast-Transient-Response Buck Converter with Analog-Voltage-Dynamic-Estimation Techniques [J].
Hwang, Yuh-Shyan ;
Liu, An ;
Chang, Yuan-Bo ;
Chen, Jiann-Jong .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2015, 30 (07) :3720-3730
[10]   A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique [J].
Lee, CF ;
Mok, PKT .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2004, 39 (01) :3-14