A CAPILLARITY PROBLEM FOR COMPRESSIBLE LIQUIDS

被引:5
作者
Athanassenas, Maria [1 ]
Clutterbuck, Julie [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
关键词
capillarity; function of bounded variation; compressible liquid; EXISTENCE; REGULARITY; EQUATIONS;
D O I
10.2140/pjm.2009.243.213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence and regularity of solutions to the capillarity problem for compressible liquids in a tube. We introduce an appropriate space of functions of bounded variation, in which the energy functional introduced recently by Robert Finn can be defined. We prove existence of a locally Lipschitz minimizer in this class.
引用
收藏
页码:213 / 232
页数:20
相关论文
共 50 条
[41]   ON THE CAUCHY PROBLEM FOR A COMPRESSIBLE OLDROYD-B MODEL WITHOUT STRESS DIFFUSION [J].
Liu, Sili ;
Lu, Yong ;
Wen, Huanyao .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (06) :6216-6242
[42]   The initial value problem of the fractional compressible Navier-Stokes-Poisson system [J].
Wang, Shu ;
Zhang, Shuzhen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 438
[43]   On an inhomogeneous boundary value problem for steady compressible magnetohydro-dynamics flow [J].
Liu, Shengquan ;
Cheng, Ming .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05)
[44]   Numerical approximation of the general compressible Stokes problem [J].
Fettah, A. ;
Gallouet, T. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (03) :922-951
[45]   ON THE INTERACTION PROBLEM BETWEEN A COMPRESSIBLE FLUID AND A SAINT-VENANT KIRCHHOFF ELASTIC STRUCTURE [J].
Boulakia, M. ;
Guerrero, S. .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2017, 22 (1-2) :1-48
[46]   On the cauchy problem for a one-dimensional full compressible non-Newtonian fluids [J].
Liu, Xin ;
Qin, Yuming .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (09) :2310-2324
[47]   STABILIZING EFFECT OF CAPILLARITY IN THE RAYLEIGH-TAYLOR PROBLEM TO THE VISCOUS INCOMPRESSIBLE CAPILLARY FLUIDS [J].
Li, Fucai ;
Zhang, Zhipeng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (04) :3287-3315
[48]   Freezing and Capillarity [J].
Huerre, Axel ;
Josserand, Christophe ;
Séon, Thomas .
Annual Review of Fluid Mechanics, 2025, 57 :257-284
[49]   Vanishing capillarity limit of the compressible non-isentropic Navier-Stokes-Korteweg system to Navier-Stokes system [J].
Hou, Xiaofeng ;
Yao, Lei ;
Zhu, Changjiang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (01) :421-446
[50]   Zero-viscosity-capillarity limit to rarefaction waves for the 1D compressible Navier-Stokes-Korteweg equations [J].
Li, Yeping ;
Luo, Zhen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) :5513-5528