A CAPILLARITY PROBLEM FOR COMPRESSIBLE LIQUIDS

被引:5
作者
Athanassenas, Maria [1 ]
Clutterbuck, Julie [2 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
关键词
capillarity; function of bounded variation; compressible liquid; EXISTENCE; REGULARITY; EQUATIONS;
D O I
10.2140/pjm.2009.243.213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the existence and regularity of solutions to the capillarity problem for compressible liquids in a tube. We introduce an appropriate space of functions of bounded variation, in which the energy functional introduced recently by Robert Finn can be defined. We prove existence of a locally Lipschitz minimizer in this class.
引用
收藏
页码:213 / 232
页数:20
相关论文
共 50 条
[21]   VANISHING CAPILLARITY LIMIT OF THE NON-CONSERVATIVE COMPRESSIBLE TWO-FLUID MODEL [J].
Lai, Jin ;
Wen, Huanyao ;
Yao, Lei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (04) :1361-1392
[22]   Dynamics of generalized time-fractional viscous-capillarity compressible fluid model [J].
Az-Zo'bi, Emad A. ;
Alomari, Qais M. M. ;
Afef, Kallekh ;
Inc, Mustafa .
OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (04)
[23]   Dynamics of generalized time-fractional viscous-capillarity compressible fluid model [J].
Emad A. Az-Zo’bi ;
Qais M. M. Alomari ;
Kallekh Afef ;
Mustafa Inc .
Optical and Quantum Electronics, 56
[24]   Zero-viscosity-capillarity limit towards rarefaction wave for the full Navier-Stokes-Korteweg system of compressible fluids [J].
Yin, Rong ;
Li, Yeping ;
Qian, Yujie .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) :9485-9507
[25]   ASYMPTOTIC STABILITY OF NONLINEAR WAVE FOR AN INFLOW PROBLEM TO THE COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM [J].
Li, Yeping ;
Qian, Yujie ;
Yin, Rong .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2024, 22 (06) :1501-1528
[26]   On the Capillary Problem for Compressible Fluids [J].
Robert Finn ;
Garving K. Luli .
Journal of Mathematical Fluid Mechanics, 2007, 9 :87-103
[27]   On the capillary problem for compressible fluids [J].
Finn, Robert ;
Luli, Garving K. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (01) :87-103
[28]   Positive solutions of a one-dimensional indefinite capillarity-type problem: a variational approach [J].
Lopez-Gomez, Julian ;
Omari, Pierpaolo ;
Rivetti, Sabrina .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :2335-2392
[29]   VANISHING CAPILLARITY LIMIT OF THE COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE TO THE NAVIER-STOKES EQUATIONS [J].
Bian, Dongfen ;
Yao, Lei ;
Zhu, Changjiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (02) :1633-1650
[30]   THE INITIAL-BOUNDARY VALUE PROBLEM FOR THE COMPRESSIBLE VISCOELASTIC FLOWS [J].
Hu, Xianpeng ;
Wang, Dehua .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) :917-934