Analysis of the fast-slow Lorenz-Stenflo system

被引:7
作者
Han Xiu-Jing [1 ]
Jiang Bo [1 ,2 ]
Bi Qin-Sheng [1 ]
机构
[1] Jiangsu Univ, Fac Sci, Zhenjiang 212013, Peoples R China
[2] Jiangsu Teachers Univ Technol, Sch Math & Phys, Changzhou 213001, Peoples R China
基金
中国国家自然科学基金;
关键词
Lorenz-Stenflo system; slow-fast analysis; bifurcation; symmetric bursting; EQUATIONS; ATTRACTOR;
D O I
10.7498/aps.58.4408
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By rescaling the system, we obtain the Lorenz-Stenflo system with slow variation of the flow rotation. Based on Routh-Hurwitz criteria, the stabilities of the equilibria are analyzed and the bifurcation sets are sought to divide the parameter plane into different regions, corresponding to different types of the solutions. Different types of the solutions may bifurcate from the equilibria with the chang of the parameters. Furthermore, the symmetric bursting and the symmetric chaos are presented, and the mechanism of the symmetric bursting is explored by the method of slow-fast analysis.
引用
收藏
页码:4408 / 4414
页数:7
相关论文
共 21 条
[11]  
RINZEL J, 1989, METHOD NEURONAL MODE
[12]  
SALZMANN B, 1962, J ATMOS SCI, V19, P239
[13]   Generalized Lorenz equations for acoustic-gravity waves in the atmosphere [J].
Stenflo, L .
PHYSICA SCRIPTA, 1996, 53 (01) :83-84
[14]   A hyperchaotic Lorenz attractor and its circuit implementation [J].
Wang Guang-Yi ;
Zheng Yan ;
Liu Jing-Biao .
ACTA PHYSICA SINICA, 2007, 56 (06) :3113-3120
[15]   Hyperchaotic Lorenz system [J].
Wang Xing-Yuan ;
Wang Ming-Jun .
ACTA PHYSICA SINICA, 2007, 56 (09) :5136-5141
[16]  
Williams R.F., 1979, PUBL MATH-PARIS, V50, P101
[17]   Periodic and chaotic solutions of the generalized Lorenz equations [J].
Yu, MY ;
Yang, B .
PHYSICA SCRIPTA, 1996, 54 (02) :140-142
[18]   The bifurcation characteristics of the generalized Lorenz equations [J].
Yu, MY ;
Zhou, CT ;
Lai, CH .
PHYSICA SCRIPTA, 1996, 54 (04) :321-324
[19]   Analysis of the functional relationship between the large-scale circulations and Meso-scale convective systems [J].
Zhang Wen ;
He Wen-Ping ;
Zou Ming-Wei ;
Feng Guo-Lin .
ACTA PHYSICA SINICA, 2007, 56 (10) :6150-6156
[20]   Bifurcation behavior of the generalized Lorenz equations at large rotation numbers [J].
Zhou, CT ;
Lai, CH ;
Yu, MY .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (10) :5225-5239