Hamiltonian Simulation by Qubitization

被引:566
作者
Low, Guang Hao [1 ]
Chuang, Isaac L. [2 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Dept Elect Engn & Comp Sci, Res Lab Elect, Cambridge, MA 02139 USA
关键词
QUANTUM ALGORITHMS; DEPENDENCE; COMPUTER;
D O I
10.22331/q-2019-07-12-163
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the problem of approximating the time-evolution operator in to error e-(i (H) over capt) to error epsilon, where the Hamiltonian (H) over cap = (< G vertical bar circle times(I) over cap) is the projection of a unitary oracle (U) over cap onto the state vertical bar G > created by another unitary oracle. Our algorithm solves this with a query complexity O(t + log(1/epsilon)) to both oracles that is optimal with respect to all parameters in both the asymptotic and non-asymptotic regime, and also with low overhead, using at most two additional ancilla qubits. This approach to Hamiltonian simulation subsumes important prior art considering Hamiltonians which are d-sparse or a linear combination of unitaries, leading to significant improvements in space and gate complexity, such as a quadratic speed-up for precision simulations. It also motivates useful new instances, such as where (H) over cap is a density matrix. A key technical result is `qubitization', which uses the controlled version of these oracles to embed any (H) over cap in an invariant SU(2) subspace. A large class of operator functions of (H) over cap can then be computed with optimal query complexity, of which e-(i (H) over capt) is a special case.
引用
收藏
页数:23
相关论文
共 51 条
[1]  
Aharonov D., 2003, P 35 ANN ACM S THEOR, Vquant-ph, P0301023, DOI DOI 10.1145/780542.780546
[2]   Exponentially more precise quantum simulation of fermions in second quantization [J].
Babbush, Ryan ;
Berry, Dominic W. ;
Kivlichan, Ian D. ;
Wei, Annie Y. ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2016, 18
[3]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[4]  
Berry DW, 2016, QUANTUM INF COMPUT, V16, P1295
[5]   Hamiltonian simulation with nearly optimal dependence on all parameters [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Kothari, Robin .
2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, :792-809
[6]   Exponential improvement in precision for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, :283-292
[7]   Simulating Hamiltonian Dynamics with a Truncated Taylor Series [J].
Berry, Dominic W. ;
Childs, Andrew M. ;
Cleve, Richard ;
Kothari, Robin ;
Somma, Rolando D. .
PHYSICAL REVIEW LETTERS, 2015, 114 (09)
[8]  
Berry DW, 2012, QUANTUM INF COMPUT, V12, P29
[9]   Rootfinding for a transcendental equation without a first guess: Polynomialization of Kepler's equation through Chebyshev polynomial expansion of the sine [J].
Boyd, John P. .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (01) :12-18
[10]   Quantum Speed-ups for Solving Semidefinite Programs [J].
Brandao, Fernando G. S. L. ;
Svore, Krysta M. .
2017 IEEE 58TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2017, :415-426