Multiplicity of positive solutions for a nonlinear Schrodinger-Poisson system

被引:80
作者
Sun, Juntao [1 ]
Wu, Tsung-fang [2 ]
Feng, Zhaosheng [3 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo 255049, Peoples R China
[2] Natl Univ Kaohsiung, Dept Appl Math, Kaohsiung 811, Taiwan
[3] Univ Texas Rio Grande Valley, Dept Math, Edinburg, TX 78539 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Positive solutions; Sobolev embedding theorem; Schrodinger Poisson system; Radial solution; Barycenter map; Concentration-compactness principle; CONCENTRATION-COMPACTNESS PRINCIPLE; GROUND-STATE SOLUTIONS; NODAL SOLUTIONS; EXISTENCE; EQUATION; CALCULUS;
D O I
10.1016/j.jde.2015.09.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the multiplicity of positive solutions for a nonlinear Schrodinger Poisson system: {-Delta U + lambda U + K (x) phi u = Q(x) broken vertical bar u broken vertical bar(p-2) u in R-3,R- -Delta phi = K(x) u(2) in R-3, where lambda > 0, 2 < p < 6, and both K(x) and Q(x) are nonnegative and uniformly continuous functions on R-3. We show that the number of positive solutions is dependent on the profile of Q (x). Some novel results are presented which improve and generalize the existing ones in the literature. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:586 / 627
页数:42
相关论文
共 35 条
[1]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[2]  
[Anonymous], 1997, Minimax theorems
[3]  
Aprile T., 2004, ADV NONLINEAR STUD, V4, P307
[4]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[5]   Concentration and compactness in nonlinear Schrodinger-Poisson system with a general nonlinearity [J].
Azzollini, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) :1746-1763
[6]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[7]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[8]  
Binding P. A., 1997, ELECT J DIFFERENTIAL, V1997, P1
[9]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[10]  
Brown KJ, 2009, DIFFER INTEGRAL EQU, V22, P1097