The capsid protein of human immunodeficiency virus: intersubunit interactions during virus assembly

被引:40
作者
Mateu, Mauricio G. [1 ]
机构
[1] Univ Autonoma Madrid, Ctr Biol Mol Severo Ochoa, CSIC, E-28049 Madrid, Spain
关键词
capsid; conformational stability and dynamics; human immunodeficiency virus; molecular recognition; protein association; protein conformation; protein structure-function relationships; virus assembly; C-TERMINAL DOMAIN; MAJOR HOMOLOGY REGION; ROUS-SARCOMA-VIRUS; IN-VITRO; DIMERIZATION DOMAIN; GAG-PROTEIN; VIRION MORPHOGENESIS; HIV-1; MORPHOGENESIS; TYPE-1; CORE;
D O I
10.1111/j.1742-4658.2009.07313.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The capsid protein (CA) of HIV-1 is composed of two domains, the N-terminal domain (NTD) and the C-terminal domain (CTD). During the assembly of the immature HIV-1 particle, both CA domains constitute a part of the Gag polyprotein, which forms a spherical capsid comprising up to 5000 radially arranged, extended subunits. Gag-Gag interactions in the immature capsid are mediated in large part by interactions between CA domains, which are involved in the formation of a lattice of connected Gag hexamers. After Gag proteolysis during virus maturation, the CA protein is released, and approximately 1000-1500 free CA subunits self-assemble into a truncated cone-shaped capsid. In the mature capsid, NTD-NTD and NTD-CTD interfaces are involved in the formation of CA hexamers, and CTD-CTD interfaces connect neighboring hexamers through homodimerization. The CA-CA interfaces involved in the assembly of the immature capsid and those forming the mature capsid are different, at least in part. CA appears to have evolved an extraordinary conformational plasticity, which allows the creation of multiple CA-CA interfaces and the occurrence of CA conformational switches. This minireview focuses on recent structure-function studies of the diverse CA-CA interactions and interfaces involved in HIV-1 assembly. Those studies are leading to a better understanding of molecular recognition events during virus morphogenesis, and are also relevant for the development of anti-HIV drugs that are able to interfere with capsid assembly or disassembly.
引用
收藏
页码:6098 / 6109
页数:12
相关论文
共 61 条
[1]   The molecular basis of HIV capsid assembly - five years of progress [J].
Adamson, CS ;
Jones, IM .
REVIEWS IN MEDICAL VIROLOGY, 2004, 14 (02) :107-121
[2]   The retroviral capsid domain dictates virion size, morphology, and coassembly of Gag into virus-like particles [J].
Ako-Adjei, D ;
Johnson, MC ;
Vogt, VM .
JOURNAL OF VIROLOGY, 2005, 79 (21) :13463-13472
[3]   Structural mobility of the monomeric C-terminal domain of the HIV-1 capsid protein [J].
Alcaraz, Luis A. ;
del Alamo, Marta ;
Mateu, Mauricio G. ;
Neira, Jose L. .
FEBS JOURNAL, 2008, 275 (13) :3299-3311
[4]   Flexibility in HIV-1 assembly subunits: Solution structure of the monomeric C-terminal domain of the capsid protein [J].
Alcaraz, Luis A. ;
del Alamo, Marta ;
Barrera, Francisco N. ;
Mateu, Mauricio G. ;
Neira, Jose L. .
BIOPHYSICAL JOURNAL, 2007, 93 (04) :1264-1276
[5]   The C-terminal half of the human immunodeficiency virus type 1 Gag precursor is sufficient for efficient particle assembly [J].
Borsetti, A ;
Ohagen, Å ;
Göttlinger, HG .
JOURNAL OF VIROLOGY, 1998, 72 (11) :9313-9317
[6]   Second-site suppressors of Rous sarcoma virus CA mutations: Evidence for interdomain interactions [J].
Bowzard, JB ;
Wills, JW ;
Craven, RC .
JOURNAL OF VIROLOGY, 2001, 75 (15) :6850-6856
[7]   Structure and assembly of immature HIV [J].
Briggs, J. A. G. ;
Riches, J. D. ;
Glass, B. ;
Bartonova, V. ;
Zanetti, G. ;
Kraeusslich, H.-G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (27) :11090-11095
[8]   The stoichiometry of Gag protein in HIV-1 [J].
Briggs, JAG ;
Simon, MN ;
Gross, I ;
Kräusslich, HG ;
Fuller, SD ;
Vogt, VM ;
Johnson, MC .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (07) :672-675
[9]   Structural organization of authentic, mature HIV-1 virions and cores [J].
Briggs, JAG ;
Wilk, T ;
Welker, R ;
Kräusslich, HG ;
Fuller, SD .
EMBO JOURNAL, 2003, 22 (07) :1707-1715
[10]   In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain [J].
Campbell, S ;
Rein, A .
JOURNAL OF VIROLOGY, 1999, 73 (03) :2270-2279