We propose two broadband pulse schemes for N-14 solid-state magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) that achieves (i) complete population inversion and (ii) efficient excitation of the double-quantum spectrum using low-power single-sideband-selective pulses. We give a comprehensive theoretical description of both schemes using a common framework that is based on the jolting-frame formalism of Caravatti et al. [J. Magn. Reson. 55, 88 (1983)]. This formalism is used to determine for the first time that we can obtain complete population inversion of N-14 under low-power conditions, which we do here using single-sideband-selective adiabatic pulses. It is then used to predict that double-quantum coherences can be excited using low-power single-sideband-selective pulses. We then proceed to design a new experimental scheme for double-quantum excitation. The final double-quantum excitation pulse scheme is easily incorporated into other NMR experiments, as demonstrated here for double quantum-single quantum N-14 correlation spectroscopy, and H-1-N-14 dipolar heteronuclear multiple-quantum correlation experiments. These pulses and irradiation schemes are evaluated numerically using simulations on single crystals and full powders, as well as experimentally on ammonium oxalate ((NH4)(2)C2O4) at moderate MAS and glycine at ultra-fast MAS. The performance of these new NMR methods is found to be very high, with population inversion efficiencies of 100% and double-quantum excitation efficiencies of 30%-50%, which are hitherto unprecedented for the low radiofrequency field amplitudes, up to the spinning frequency, that are used here. Published by AIP Publishing.