Superconductor-based quantum-dot light-emitting diodes: Role of Cooper pairs in generating entangled photon pairs

被引:39
作者
Suemune, Ikuo [1 ]
Akazaki, Tatsushi
Tanaka, Kazunori
Jo, Masafumi
Uesugi, Katsuhiro
Endo, Michiaki
Kumano, Hidekazu
Hanamura, Eiichi
Takayanagi, Hideaki
Yamanishi, Masamichi
Kan, Hirofumi
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010021, Japan
[2] CREST, Japan Sci & Technol Corp, Kawaguchi, Saitama 3320012, Japan
[3] Nippon Telegraph & Tel Corp, Basic Res Lab, Shizuoka 4348601, Japan
[4] Muroran Inst Technol, Fac Engn, Muroran, Hokkaido 0508585, Japan
[5] Chitose Inst Sci & Technol, Fac Photon Sci, Chitose, Hokkaido 0668655, Japan
[6] Tokyo Univ Sci, Dept Appl Phys, Tokyo 1628601, Japan
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS | 2006年 / 45卷 / 12期
关键词
entangled photon pair; cooper pair; quantum dot; exciton; LED;
D O I
10.1143/JJAP.45.9264
中图分类号
O59 [应用物理学];
学科分类号
摘要
The realization of solid-state photon sources that are capable of on-demand generation of an entangled single-photon pair at a generating an entangled time is highly desired for quantum information processing and communication. A new method of single-photon pair at a time is proposed employing Cooper-pair-related radiative recombination in a quantum dot (QD). Cooper pairs are bosons and the control of their number states is difficult. Pauli's exclusion principle on quasiparticles in a discrete state of a QD regulates the number state of the generated photon pairs in this scheme. The fundamental heterostructures for constructing superconductor-based quantum-dot light-emitting diodes (SQ-LEDs) and the fundamental operation conditions of SQ-LED will be discussed. The experimental studies on Cooper-pair injection into the related semiconductor structures will be also discussed.
引用
收藏
页码:9264 / 9271
页数:8
相关论文
共 41 条
[21]   Josephson persistent-current qubit [J].
Mooij, JE ;
Orlando, TP ;
Levitov, L ;
Tian, L ;
van der Wal, CH ;
Lloyd, S .
SCIENCE, 1999, 285 (5430) :1036-1039
[22]   Coherent control of macroscopic quantum states in a single-Cooper-pair box [J].
Nakamura, Y ;
Pashkin, YA ;
Tsai, JS .
NATURE, 1999, 398 (6730) :786-788
[23]  
Nielsen Michael A, 2002, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[24]   Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm [J].
Paranthoen, C ;
Bertru, N ;
Dehaese, O ;
Le Corre, A ;
Loualiche, S ;
Lambert, B ;
Patriarche, G .
APPLIED PHYSICS LETTERS, 2001, 78 (12) :1751-1753
[25]   Towards a single-mode single photon source based on single quantum dots [J].
Robert, I ;
Moreau, E ;
Gérard, JM ;
Abram, I .
JOURNAL OF LUMINESCENCE, 2001, 94 (94-95) :797-803
[26]   Repulsive exciton-exciton interaction in quantum dots [J].
Rodt, S ;
Heitz, R ;
Schliwa, A ;
Sellin, RL ;
Guffarth, F ;
Bimberg, D .
PHYSICAL REVIEW B, 2003, 68 (03)
[27]  
Rose-Innes A. C., 1978, INTRO SUPERCONDUCTIV
[28]   Multiphoton transitions in a macroscopic quantum two-state system [J].
Saito, S ;
Thorwart, M ;
Tanaka, H ;
Ueda, M ;
Nakano, H ;
Semba, K ;
Takayanagi, H .
PHYSICAL REVIEW LETTERS, 2004, 93 (03) :037001-1
[29]   Polarization-correlated photon pairs from a single quantum dot [J].
Santori, C ;
Fattal, D ;
Pelton, M ;
Solomon, GS ;
Yamamoto, Y .
PHYSICAL REVIEW B, 2002, 66 (04) :1-4
[30]   Indistinguishable photons from a single-photon device [J].
Santori, C ;
Fattal, D ;
Vuckovic, J ;
Solomon, GS ;
Yamamoto, Y .
NATURE, 2002, 419 (6907) :594-597