Superconductor-based quantum-dot light-emitting diodes: Role of Cooper pairs in generating entangled photon pairs

被引:39
作者
Suemune, Ikuo [1 ]
Akazaki, Tatsushi
Tanaka, Kazunori
Jo, Masafumi
Uesugi, Katsuhiro
Endo, Michiaki
Kumano, Hidekazu
Hanamura, Eiichi
Takayanagi, Hideaki
Yamanishi, Masamichi
Kan, Hirofumi
机构
[1] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido 0010021, Japan
[2] CREST, Japan Sci & Technol Corp, Kawaguchi, Saitama 3320012, Japan
[3] Nippon Telegraph & Tel Corp, Basic Res Lab, Shizuoka 4348601, Japan
[4] Muroran Inst Technol, Fac Engn, Muroran, Hokkaido 0508585, Japan
[5] Chitose Inst Sci & Technol, Fac Photon Sci, Chitose, Hokkaido 0668655, Japan
[6] Tokyo Univ Sci, Dept Appl Phys, Tokyo 1628601, Japan
来源
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS | 2006年 / 45卷 / 12期
关键词
entangled photon pair; cooper pair; quantum dot; exciton; LED;
D O I
10.1143/JJAP.45.9264
中图分类号
O59 [应用物理学];
学科分类号
摘要
The realization of solid-state photon sources that are capable of on-demand generation of an entangled single-photon pair at a generating an entangled time is highly desired for quantum information processing and communication. A new method of single-photon pair at a time is proposed employing Cooper-pair-related radiative recombination in a quantum dot (QD). Cooper pairs are bosons and the control of their number states is difficult. Pauli's exclusion principle on quasiparticles in a discrete state of a QD regulates the number state of the generated photon pairs in this scheme. The fundamental heterostructures for constructing superconductor-based quantum-dot light-emitting diodes (SQ-LEDs) and the fundamental operation conditions of SQ-LED will be discussed. The experimental studies on Cooper-pair injection into the related semiconductor structures will be also discussed.
引用
收藏
页码:9264 / 9271
页数:8
相关论文
共 41 条
[1]  
AKAZAKI T, 2005, 52 SPRING M
[2]   Self-organized CdSe quantum dots on (100)ZnSe/GaAs surfaces grown by metalorganic molecular beam epitaxy [J].
Arita, M ;
Avramescu, A ;
Uesugi, K ;
Suemune, I ;
Numai, T ;
Machida, H ;
Shimoyama, N .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 1997, 36 (6B) :4097-4101
[3]  
Bouwmeester D, 2000, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation
[4]  
De Gennes P. G., 1999, SUPERCONDUCTIVITY ME
[5]   Single-hole spin relaxation in a quantum dot [J].
Flissikowski, T ;
Akimov, IA ;
Hundt, A ;
Henneberger, F .
PHYSICAL REVIEW B, 2003, 68 (16)
[6]  
GILCHRIST A, QUANTPH0602018
[7]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[8]  
Hanamura E, 2002, PHYS STATUS SOLIDI B, V234, P166, DOI 10.1002/1521-3951(200211)234:1<166::AID-PSSB166>3.0.CO
[9]  
2-J
[10]   RADIATIVE RECOMBINATION IN TYPE-II GASB/GAAS QUANTUM DOTS [J].
HATAMI, F ;
LEDENTSOV, NN ;
GRUNDMANN, M ;
BOHRER, J ;
HEINRICHSDORFF, F ;
BEER, M ;
BIMBERG, D ;
RUVIMOV, SS ;
WERNER, P ;
GOSELE, U ;
HEYDENREICH, J ;
RICHTER, U ;
IVANOV, SV ;
MELTSER, BY ;
KOPEV, PS ;
ALFEROV, ZI .
APPLIED PHYSICS LETTERS, 1995, 67 (05) :656-658