POISSON WHITE NOISE DRIVEN SPACE-FRACTIONAL DIFFUSION EQUATIONS

被引:0
作者
Zhang, Xia [1 ]
Shahzad, Khattak [1 ]
Fu, Yongqiang [1 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal control; Poisson white noise driven; space fractional diffusion equation; condition for optimality; fractional Sobolev space;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Poisson white noise driven space fractional diffusion equations. We generalize the results in the paper of Albeverioa, Wu and Zhang [Stochastic Processes and their Applications, 74(1998), 21-36] to high dimension and fractional Laplacian operators, where the existence and uniqueness of solution are established. Moreover we show the existence of an optimal control for a control problem of the Poisson white noise driven space fractional diffusion equations.
引用
收藏
页码:393 / 406
页数:14
相关论文
共 21 条
[1]   Parabolic SPDEs driven by Poisson white noise [J].
Albeverio, S ;
Wu, JL ;
Zhang, TS .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 74 (01) :21-36
[2]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[3]   Optimal control of fractional reaction-diffusion equations with Poisson jumps [J].
Durga, N. ;
Muthukumar, P. .
JOURNAL OF ANALYSIS, 2019, 27 (02) :605-621
[4]  
Ikeda N., 1981, Stochastic Differential Equations and Diffusion Processes
[5]  
ITO K, 1984, LIBR INFORM SC, P47
[6]   Hybrid symbolic and numerical simulation studies of time-fractional order wave-diffusion systems [J].
Liang, J. ;
Chen, Y. Q. .
INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (11) :1462-1470
[7]  
Lions J.-L., 1971, OPTIMAL CONTROL SYST, V170
[8]  
Luchko Y., 1999, ACTA MATH VIETNAM, V24, P207
[9]   Fractional relaxation-oscillation and fractional diffusion-wave phenomena [J].
Mainardi, F .
CHAOS SOLITONS & FRACTALS, 1996, 7 (09) :1461-1477
[10]  
Mainardi F., 2000, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models, DOI [DOI 10.1142/P926, 10.1142/p926, DOI 10.1142/P614]