Non linear gluon evolution in path-integral form

被引:96
作者
Blaizot, JP
Iancu, E [1 ]
Weigert, H
机构
[1] CEA Saclay, Serv Phys Theor, CEA DSM SPhT, Unite Rech Associee CNRS, F-91191 Gif Sur Yvette, France
[2] Univ Regensburg, D-93040 Regensburg, Germany
[3] Univ Calif Santa Barbara, Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9474(02)01299-X
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We explore and clarify the connections between two different forms of the renormalization group equations describing the quantum evolution of hadronic structure functions at small x. This connection is established via a Langevin formulation and associated path integral solutions that highlight the statistical nature of the quantum evolution, pictured here as a random walk in the space of Wilson lines. The results confirm known approximations, form the basis for numerical simulations and widen the scope for further analytical studies. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:441 / 469
页数:29
相关论文
共 47 条
[1]   ASYMPTOTIC FREEDOM IN PARTON LANGUAGE [J].
ALTARELLI, G ;
PARISI, G .
NUCLEAR PHYSICS B, 1977, 126 (02) :298-318
[2]   Parton densities and dipole cross-sections at small x in large nuclei [J].
Armesto, N ;
Braun, MA .
EUROPEAN PHYSICAL JOURNAL C, 2001, 20 (03) :517-522
[3]   Symmetric path integrals for stochastic equations with multiplicative noise [J].
Arnold, P .
PHYSICAL REVIEW E, 2000, 61 (06) :6099-6102
[4]   Langevin equations with multiplicative noise: Resolution of time discretization ambiguities for equilibrium systems [J].
Arnold, P .
PHYSICAL REVIEW E, 2000, 61 (06) :6091-6098
[5]  
BALITSKII YY, 1978, SOV J NUCL PHYS+, V28, P822
[6]   Operator expansion for high-energy scattering [J].
Balitsky, I .
NUCLEAR PHYSICS B, 1996, 463 (01) :99-157
[7]  
BALITSKY I, HEPPH0101042
[8]   THE EARLY STAGE OF ULTRA-RELATIVISTIC HEAVY-ION COLLISIONS [J].
BLAIZOT, JP ;
MUELLER, AH .
NUCLEAR PHYSICS B, 1987, 289 (3-4) :847-860
[9]  
Braun M, 2000, EUR PHYS J C, V16, P337, DOI 10.1007/s100520050026
[10]  
Dokshitzer Y., 1991, BASICS PERTURBATIVE