Feature weighting for naive Bayes using multi objective artificial bee colony algorithm

被引:6
|
作者
Chaudhuri, Abhilasha [1 ]
Sahu, Tirath Prasad [1 ]
机构
[1] Natl Inst Technol Raipur, Dept Informat Technol, Chhattisgarh, India
关键词
naive Bayes; feature weighting; multi objective optimisation; artificial bee colony;
D O I
10.1504/IJCSE.2021.113655
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Naive Bayes (NB) is a widely used classifier in the field of machine learning. However, its conditional independence assumption does not hold true in real-world applications. In literature, various feature weighting approaches have attempted to alleviate this assumption. Almost all of these approaches consider the relationship between feature-class (relevancy) and feature-feature (redundancy) independently, to determine the weights of features. We argue that these two relationships are mutually dependent and both cannot be improved simultaneously, i.e., form a trade-off. This paper proposes a new paradigm to determine the feature weight by formulating it as a multi-objective optimisation problem to balance the trade-off between relevancy and redundancy. Multi-objective artificial bee colony-based feature weighting technique for naive Bayes (MOABC-FWNB) is proposed. An extensive experimental study was conducted on 20 benchmark UCI datasets. Experimental results show that MOABC-FWNB outperforms NB and other existing state-of-the-art feature weighting techniques.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [1] A multi-objective artificial bee colony algorithm
    Akbari, Reza
    Hedayatzadeh, Ramin
    Ziarati, Koorush
    Hassanizadeh, Bahareh
    SWARM AND EVOLUTIONARY COMPUTATION, 2012, 2 : 39 - 52
  • [2] Modified Naive Bayes Algorithm for Network Intrusion Detection based on Artificial Bee Colony Algorithm
    Yang, Juan
    Ye, Zhiwei
    Yan, Lingyu
    Gu, Wei
    Wang, Ruoxi
    PROCEEDINGS OF THE 2018 IEEE 4TH INTERNATIONAL SYMPOSIUM ON WIRELESS SYSTEMS WITHIN THE INTERNATIONAL CONFERENCES ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS (IDAACS-SWS), 2018, : 35 - 40
  • [3] An artificial bee colony algorithm for multi-objective optimisation
    Luo, Jianping
    Liu, Qiqi
    Yang, Yun
    Li, Xia
    Chen, Min-rong
    Cao, Wenming
    APPLIED SOFT COMPUTING, 2017, 50 : 235 - 251
  • [4] An Enhanced Artificial Bee Colony: Naive Bayes Technique for Optimizing Software Testing
    Palak
    Gulia, Preeti
    Gill, Nasib Singh
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (02) : 220 - 225
  • [5] Multi-objective Capacitor Allocations in Distribution Networks using Artificial Bee Colony Algorithm
    El-Fergany, Attia
    Abdelaziz, A. Y.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2014, 9 (02) : 441 - 451
  • [6] Deep Feature Weighting Based on Genetic Algorithm and Naive Bayes for Twitter Sentiment Analysis
    Cahya, Reiza Adi
    Adimanggala, Dinda
    Supianto, Ahmad Afif
    PROCEEDINGS OF 2019 4TH INTERNATIONAL CONFERENCE ON SUSTAINABLE INFORMATION ENGINEERING AND TECHNOLOGY (SIET 2019), 2019, : 326 - 331
  • [7] A Probabilistic Multi-Objective Artificial Bee Colony Algorithm for Gene Selection
    Ozger, Zeynep Banu
    Bolat, Bulent
    Diri, Banu
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2019, 25 (04) : 418 - 443
  • [8] Discrete Artificial Bee Colony Algorithm for the Multi-Objective Redistricting problem
    Rincon Garcia, Eric A.
    Ponsich, Antonin
    Mora Gutierez, Roman A.
    Lara Vellazquez, Pedro
    Gutierrez Andrade, Miguel A.
    De Los Cobos Silva, Sergio G.
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), 2012, : 1439 - 1440
  • [9] Elite-guided multi-objective artificial bee colony algorithm
    Huo, Ying
    Zhuang, Yi
    Gu, Jingjing
    Ni, Siru
    APPLIED SOFT COMPUTING, 2015, 32 : 199 - 210
  • [10] A novel multi-objective optimisation algorithm: artificial bee colony in conjunction with bacterial foraging
    Mahmoodabadi, Mohammad Javad
    Taherkhorsandi, Milad
    Maafi, Rahmat Abedzadeh
    Castillo-Villar, Krystel K.
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2015, 3 (04) : 369 - 386