The Brunn-Minkowski inequality and nonconvex sets

被引:8
|
作者
Ruzsa, IZ [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST MATH,H-1364 BUDAPEST,HUNGARY
基金
匈牙利科学研究基金会;
关键词
volume; convexity; convex hull; sumsets;
D O I
10.1023/A:1004958110076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve the Brunn-Minkowski inequality for nonconvex sets. Besides the volume of the sets, our estimate depends on the volume of the convex hull of one of the sets. The estimate is asymptotically the best possible if this set is fixed and the size of the other tends to infinity.
引用
收藏
页码:337 / 348
页数:12
相关论文
共 50 条
  • [1] THE BRUNN-MINKOWSKI INEQUALITY FOR RANDOM SETS
    VITALE, RA
    JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 33 (02) : 286 - 293
  • [2] The Brunn–Minkowski Inequality and Nonconvex Sets
    IMRE Z. Ruzsa
    Geometriae Dedicata, 1997, 67 : 337 - 348
  • [3] A refined Brunn-Minkowski inequality for convex sets
    Figalli, A.
    Maggi, F.
    Pratelli, A.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2511 - 2519
  • [4] The Brunn-Minkowski inequality
    Gardner, RJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03) : 355 - 405
  • [5] THE φ-BRUNN-MINKOWSKI INEQUALITY
    Lv, S. -J.
    ACTA MATHEMATICA HUNGARICA, 2018, 156 (01) : 226 - 239
  • [6] Brunn-Minkowski Inequality
    Alonso-Gutierrez, David
    Bastero, Jesus
    APPROACHING THE KANNAN-LOVASZ-SIMONOVITS AND VARIANCE CONJECTURES, 2015, 2131 : 137 - 146
  • [7] A nonabelian Brunn-Minkowski inequality
    Jing, Yifan
    Tran, Chieu-Minh
    Zhang, Ruixiang
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2023, 33 (04) : 1048 - 1100
  • [8] Refinements of the Brunn-Minkowski Inequality
    Hernandez Cifre, Maria A.
    Yepes Nicolas, Jesus
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (03) : 727 - 743
  • [9] Companions to the Brunn-Minkowski inequality
    Niezgoda, Marek
    POSITIVITY, 2025, 29 (01)
  • [10] Generalizations of the Brunn-Minkowski inequality
    Liu, Juntong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 508 : 206 - 213