A NOTE ON TODOROV SURFACES

被引:0
|
作者
Rito, Carlos [1 ]
机构
[1] Univ Tras os Montes & Alto Douro, Dept Matemat, P-5000911 Vila Real, Portugal
关键词
GENERAL TYPE; PG=1;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be a Todorov surface, i.e., a minimal smooth surface of general type with q = 0 and p(g) = 1 having an involution i such that S/i is birational to a K3 surface and such that the bicanonical map of S is composed with i. The main result of this paper is that, if P is the minimal smooth model of S/i, then P is the minimal desingularization of a double cover of P(2) ramified over two cubics. Furthermore it is also shown that, given a Todorov surface S, it is possible to construct Todorov surfaces S(j) with K(2) = 1,..., K(S)(2) - 1 and such that P is also the smooth minimal model of S(j)/i(j), where i(j) is the involution of S(j). Some examples are also given, namely an example different from the examples presented by Todorov in [9].
引用
收藏
页码:685 / 693
页数:9
相关论文
共 50 条
  • [21] Cylinders in del Pezzo Surfaces
    Cheltsov, Ivan
    Park, Jihun
    Won, Joonyeong
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (04) : 1179 - 1230
  • [22] UNIRATIONAL SURFACES ON THE NOETHER LINE
    Liedtke, Christian
    Schutt, Matthias
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (02) : 343 - 356
  • [23] Surfaces with pg=q=3
    Pirola, GP
    MANUSCRIPTA MATHEMATICA, 2002, 108 (02) : 163 - 170
  • [24] Identifying neighbors of stable surfaces
    Urzua, Giancarlo
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 16 (04) : 1093 - 1122
  • [25] On wormholes in the moduli space of surfaces
    Urzua, Giancarlo
    Vilches, Nicolas
    ALGEBRAIC GEOMETRY, 2022, 9 (01): : 39 - 68
  • [26] Burniat surfaces II: secondary Burniat surfaces form three connected components of the moduli space
    Bauer, I.
    Catanese, F.
    INVENTIONES MATHEMATICAE, 2010, 180 (03) : 559 - 588
  • [27] A note on non-reduced Picard schemes
    Liedtke, Christian
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (05) : 737 - 741
  • [28] On Z/3-Godeaux Surfaces
    Coughlan, Stephen
    Urzua, Giancarlo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (18) : 5609 - 5637
  • [29] Isotrivially Fibred Surfaces and Their Numerical Invariants
    Polizzi, Francesco
    BEAUVILLE SURFACES AND GROUPS, 2015, 123 : 171 - 183
  • [30] Unprojection and deformations of tertiary Burniat surfaces
    Neves, Jorge
    Pignatelli, Roberto
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2014, 13 (01) : 225 - 254