Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice

被引:61
作者
Kalla, Stefan
Stern, Michal
Basu, Jayeeta
Varoqueaux, Frederique
Reim, Kerstin
Rosenmund, Christian
Ziv, Noam E.
Brose, Nils
机构
[1] Max Planck Inst Expt Med, Dept Mol Neurobiol, D-37075 Gottingen, Germany
[2] Max Planck Inst Expt Med, Deutsche Forschungsmeinschaft Res Ctr Mol Physiol, D-37075 Gottingen, Germany
[3] Technion Israel Inst Technol, Fac Med, Dept Physiol, IL-31096 Haifa, Israel
[4] Technion Israel Inst Technol, Fac Med, Rappaport Family Inst Res Med Sci, IL-31096 Haifa, Israel
[5] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[6] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA
关键词
cAZ; live imaging; priming; synapse; protein turnover; protein degradation;
D O I
10.1523/JNEUROSCI.4330-06.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
GFP (green fluorescent protein) fusion proteins have revolutionized research on protein dynamics at synapses. However, corresponding analyses usually involve protein expression methods that override endogenous regulatory mechanisms, and therefore cause overexpression and temporal or spatial misexpression of exogenous fusion proteins, which may seriously compromise the physiological validity of such experiments. These problems can be circumvented by using knock-in mutagenesis of the endogenous genomic locus to tag the protein of interest with a fluorescent protein. We generated knock-in mice expressing a fusion protein of the presynaptic active zone protein Munc13-1 and enhanced yellow fluorescent protein ( EYFP) from the Munc13-1 locus. Munc13-1-EYFP-containing nerve cells and synapses are functionally identical to those of wild-type mice. However, their presynaptic active zones are distinctly fluorescent and readily amenable for imaging. We demonstrated the usefulness of these mice by studying the molecular dynamics of Munc13-1-EYFP at individual presynaptic sites. Fluorescence recovery after photobleaching ( FRAP) experiments revealed that Munc13-1-EYFP is rapidly and continuously lost from and incorporated into active zones (tau(1) similar to 3 min; tau(2) similar to 80 min). Munc13-1-EYFP steady-state levels and exchange kinetics were not affected by proteasome inhibitors or acute synaptic stimulation, but exchange kinetics were reduced by chronic suppression of spontaneous activity. These experiments, performed in a minimally perturbed system, provide evidence that presynaptic active zones of mammalian CNS synapses are highly dynamic structures. They demonstrate the usefulness of the knock-in approach in general and of Munc13-1-EYFP knock-in mice in particular for imaging synaptic protein dynamics.
引用
收藏
页码:13054 / 13066
页数:13
相关论文
共 49 条
[1]   Photoinactivation of native AMPA receptors reveals their real-time trafficking [J].
Adesnik, H ;
Nicoll, RA ;
England, PM .
NEURON, 2005, 48 (06) :977-985
[2]   Synaptic Drosophila UNC-13 is regulated by antagonistic G-protein pathways via a proteasome-dependent degradation mechanism [J].
Aravamudan, B ;
Broadie, K .
JOURNAL OF NEUROBIOLOGY, 2003, 54 (03) :417-438
[3]   Differential expression of two novel Munc13 proteins in rat brain [J].
Augustin, I ;
Betz, A ;
Herrmann, C ;
Jo, T ;
Brose, N .
BIOCHEMICAL JOURNAL, 1999, 337 :363-371
[4]   Munc13-1 is essential for fusion competence of glutamatergic synoptic vesicles [J].
Augustin, I ;
Rosenmund, C ;
Südhof, TC ;
Brose, N .
NATURE, 1999, 400 (6743) :457-461
[5]   Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming [J].
Betz, A ;
Thakur, P ;
Junge, HJ ;
Ashery, U ;
Rhee, JS ;
Scheuss, V ;
Rosenmund, C ;
Rettig, J ;
Brose, N .
NEURON, 2001, 30 (01) :183-196
[6]  
Betz A, 1997, J BIOL CHEM, V272, P2520
[7]   Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release [J].
Betz, A ;
Ashery, U ;
Rickmann, M ;
Augustin, I ;
Neher, E ;
Südhof, TC ;
Rettig, J ;
Brose, N .
NEURON, 1998, 21 (01) :123-136
[8]   Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly [J].
Bresler, T ;
Shapira, M ;
Boeckers, T ;
Dresbach, T ;
Futter, M ;
Garner, CC ;
Rosenblum, K ;
Gundelfinger, ED ;
Ziv, NE .
JOURNAL OF NEUROSCIENCE, 2004, 24 (06) :1507-1520
[9]   The dynamics of SAP90/PSD-95 recruitment to new synaptic junctions [J].
Bresler, T ;
Ramati, Y ;
Zamorano, PL ;
Zhai, R ;
Garner, CC ;
Ziv, NE .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2001, 18 (02) :149-167
[10]   MAMMALIAN HOMOLOGS OF CAENORHABDITIS-ELEGANS UNC-13 GENE DEFINE NOVEL FAMILY OF C-2-DOMAIN PROTEINS [J].
BROSE, N ;
HOFMANN, K ;
HATA, Y ;
SUDHOF, TC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :25273-25280