Sequential Monte Carlo without likelihoods

被引:517
作者
Sisson, S. A. [1 ]
Fan, Y.
Tanaka, Mark M.
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia
关键词
approximate Bayesian computation; Bayesian inference; importance sampling; intractable likelihoods; tuberculosis;
D O I
10.1073/pnas.0607208104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent new methods in Bayesian simulation have provided ways of evaluating posterior distributions in the presence of analytically or computationally intractable likelihood functions. Despite representing a substantial methodological advance, existing methods based on rejection sampling or Markov chain Monte Carlo can be highly inefficient and accordingly require far more iterations than may be practical to implement. Here we propose a sequential Monte Carlo sampler that convincingly overcomes these inefficiencies. We demonstrate its implementation through an epidemiological study of the transmission rate of tuberculosis.
引用
收藏
页码:1760 / 1765
页数:6
相关论文
共 50 条
[31]   New sequential Monte Carlo methods for nonlinear dynamic systems [J].
Dong Guo ;
Xiaodong Wang ;
Rong Chen .
Statistics and Computing, 2005, 15 :135-147
[32]   AN MPROVED SIR-BASED SEQUENTIAL MONTE CARLO ALGORITHM [J].
Lantherti, Roland ;
Petetini, Yohan ;
Septier, Francois ;
Desbouvries, Francois .
2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
[33]   A Semiautomatic Method for History Matching Using Sequential Monte Carlo [J].
Drovandi, Christopher ;
Nott, David J. ;
Pagendam, Daniel E. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (03) :1034-1063
[34]   Efficient block sampling strategies for sequential Monte Carlo methods [J].
Doucet, Arnaud ;
Briers, Mark ;
Stephane, Senecal .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (03) :693-711
[35]   Efficient Sequential Monte Carlo Algorithms for Integrated Population Models [J].
Axel Finke ;
Ruth King ;
Alexandros Beskos ;
Petros Dellaportas .
Journal of Agricultural, Biological and Environmental Statistics, 2019, 24 :204-224
[36]   Efficient Sequential Monte Carlo Algorithms for Integrated Population Models [J].
Finke, Axel ;
King, Ruth ;
Beskos, Alexandros ;
Dellaportas, Petros .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2019, 24 (02) :204-224
[37]   An adaptive sequential Monte Carlo method for approximate Bayesian computation [J].
Pierre Del Moral ;
Arnaud Doucet ;
Ajay Jasra .
Statistics and Computing, 2012, 22 :1009-1020
[38]   Bayesian optimization with informative parametric models via sequential Monte Carlo [J].
Oliveira, Rafael ;
Scalzo, Richard ;
Kohn, Robert ;
Cripps, Sally ;
Hardman, Kyle ;
Close, John ;
Taghavi, Nasrin ;
Lemckert, Charles .
DATA-CENTRIC ENGINEERING, 2022, 3 (01)
[39]   On sequential Monte Carlo, partial rejection control and approximate Bayesian computation [J].
Peters, G. W. ;
Fan, Y. ;
Sisson, S. A. .
STATISTICS AND COMPUTING, 2012, 22 (06) :1209-1222
[40]   Multifidelity Approximate Bayesian Computation with Sequential Monte Carlo Parameter Sampling [J].
Prescott, Thomas P. ;
Baker, Ruth E. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (02) :788-817