Sequential Monte Carlo without likelihoods

被引:518
作者
Sisson, S. A. [1 ]
Fan, Y.
Tanaka, Mark M.
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia
关键词
approximate Bayesian computation; Bayesian inference; importance sampling; intractable likelihoods; tuberculosis;
D O I
10.1073/pnas.0607208104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent new methods in Bayesian simulation have provided ways of evaluating posterior distributions in the presence of analytically or computationally intractable likelihood functions. Despite representing a substantial methodological advance, existing methods based on rejection sampling or Markov chain Monte Carlo can be highly inefficient and accordingly require far more iterations than may be practical to implement. Here we propose a sequential Monte Carlo sampler that convincingly overcomes these inefficiencies. We demonstrate its implementation through an epidemiological study of the transmission rate of tuberculosis.
引用
收藏
页码:1760 / 1765
页数:6
相关论文
共 50 条
  • [21] Dynamic sensor collaboration via sequential Monte Carlo
    Guo, D
    Wang, XD
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2004, 22 (06) : 1037 - 1047
  • [22] A SURVEY OF SEQUENTIAL MONTE CARLO METHODS FOR ECONOMICS AND FINANCE
    Creal, Drew
    ECONOMETRIC REVIEWS, 2012, 31 (03) : 245 - 296
  • [23] On sequential Monte Carlo sampling methods for Bayesian filtering
    Doucet, A
    Godsill, S
    Andrieu, C
    STATISTICS AND COMPUTING, 2000, 10 (03) : 197 - 208
  • [24] Reinforcement learning, Sequential Monte Carlo and the EM algorithm
    VIVEK S BORKAR
    ANKUSH V JAIN
    Sādhanā, 2018, 43
  • [25] Reinforcement learning, Sequential Monte Carlo and the EM algorithm
    Borkar, Vivek S.
    Jain, Ankush V.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2018, 43 (08):
  • [26] Sequential Monte Carlo methods for permutation tests on truncated data
    Chen, Yuguo
    Liu, Jun S.
    STATISTICA SINICA, 2007, 17 (03) : 857 - 872
  • [27] Efficient Sequential Monte Carlo With Multiple Proposals and Control Variates
    Li, Wentao
    Chen, Rong
    Tan, Zhiqiang
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (513) : 298 - 313
  • [28] New sequential Monte Carlo methods for nonlinear dynamic systems
    Guo, D
    Wang, XD
    Chen, R
    STATISTICS AND COMPUTING, 2005, 15 (02) : 135 - 147
  • [29] Sequential Monte Carlo with Adaptive Weights for Approximate Bayesian Computation
    Bonassi, Fernando V.
    West, Mike
    BAYESIAN ANALYSIS, 2015, 10 (01): : 171 - 187
  • [30] Efficient Sequential Monte-Carlo Samplers for Bayesian Inference
    Thi Le Thu Nguyen
    Septier, Franois
    Peters, Gareth W.
    Delignon, Yves
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (05) : 1305 - 1319