Sequential Monte Carlo without likelihoods

被引:532
作者
Sisson, S. A. [1 ]
Fan, Y.
Tanaka, Mark M.
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia
关键词
approximate Bayesian computation; Bayesian inference; importance sampling; intractable likelihoods; tuberculosis;
D O I
10.1073/pnas.0607208104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent new methods in Bayesian simulation have provided ways of evaluating posterior distributions in the presence of analytically or computationally intractable likelihood functions. Despite representing a substantial methodological advance, existing methods based on rejection sampling or Markov chain Monte Carlo can be highly inefficient and accordingly require far more iterations than may be practical to implement. Here we propose a sequential Monte Carlo sampler that convincingly overcomes these inefficiencies. We demonstrate its implementation through an epidemiological study of the transmission rate of tuberculosis.
引用
收藏
页码:1760 / 1765
页数:6
相关论文
共 50 条
[1]   Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo [J].
Yildirim, Sinan ;
Singh, Sumeetpal S. ;
Dean, Thomas ;
Jasra, Ajay .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) :846-865
[2]   A New Monte Carlo Method for Estimating Marginal Likelihoods [J].
Wang, Yu-Bo ;
Chen, Ming-Hui ;
Kuo, Lynn ;
Lewis, Paul O. .
BAYESIAN ANALYSIS, 2018, 13 (02) :311-333
[3]   Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods [J].
Nishimura, Akihiko ;
Dunson, David B. ;
Lu, Jianfeng .
BIOMETRIKA, 2020, 107 (02) :365-380
[4]   Sequential Monte Carlo samplers [J].
Del Moral, Pierre ;
Doucet, Arnaud ;
Jasra, Ajay .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :411-436
[5]   Exact and Monte Carlo calculations of integrated likelihoods for the latent class model [J].
Biernacki, C. ;
Celeux, G. ;
Govaert, G. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) :2991-3002
[6]   Persistent Sampling: Enhancing the Efficiency of Sequential Monte Carlo [J].
Karamanis, Minas ;
Seljak, Uros .
STATISTICS AND COMPUTING, 2025, 35 (05)
[7]   Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals [J].
South, L. F. ;
Pettitt, A. N. ;
Drovandi, C. C. .
BAYESIAN ANALYSIS, 2019, 14 (03) :753-776
[8]   A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets [J].
Greg Ridgeway ;
David Madigan .
Data Mining and Knowledge Discovery, 2003, 7 :301-319
[9]   An adaptive sequential Monte Carlo method for approximate Bayesian computation [J].
Del Moral, Pierre ;
Doucet, Arnaud ;
Jasra, Ajay .
STATISTICS AND COMPUTING, 2012, 22 (05) :1009-1020
[10]   A sequential Monte Carlo method for Bayesian analysis of massive datasets [J].
Ridgeway, G ;
Madigan, D .
DATA MINING AND KNOWLEDGE DISCOVERY, 2003, 7 (03) :301-319