Sequential Monte Carlo without likelihoods

被引:518
|
作者
Sisson, S. A. [1 ]
Fan, Y.
Tanaka, Mark M.
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia
关键词
approximate Bayesian computation; Bayesian inference; importance sampling; intractable likelihoods; tuberculosis;
D O I
10.1073/pnas.0607208104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent new methods in Bayesian simulation have provided ways of evaluating posterior distributions in the presence of analytically or computationally intractable likelihood functions. Despite representing a substantial methodological advance, existing methods based on rejection sampling or Markov chain Monte Carlo can be highly inefficient and accordingly require far more iterations than may be practical to implement. Here we propose a sequential Monte Carlo sampler that convincingly overcomes these inefficiencies. We demonstrate its implementation through an epidemiological study of the transmission rate of tuberculosis.
引用
收藏
页码:1760 / 1765
页数:6
相关论文
共 50 条
  • [1] Parameter Estimation in Hidden Markov Models With Intractable Likelihoods Using Sequential Monte Carlo
    Yildirim, Sinan
    Singh, Sumeetpal S.
    Dean, Thomas
    Jasra, Ajay
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (03) : 846 - 865
  • [2] A New Monte Carlo Method for Estimating Marginal Likelihoods
    Wang, Yu-Bo
    Chen, Ming-Hui
    Kuo, Lynn
    Lewis, Paul O.
    BAYESIAN ANALYSIS, 2018, 13 (02): : 311 - 333
  • [3] Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods
    Nishimura, Akihiko
    Dunson, David B.
    Lu, Jianfeng
    BIOMETRIKA, 2020, 107 (02) : 365 - 380
  • [4] Sequential Monte Carlo samplers
    Del Moral, Pierre
    Doucet, Arnaud
    Jasra, Ajay
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 : 411 - 436
  • [5] Exact and Monte Carlo calculations of integrated likelihoods for the latent class model
    Biernacki, C.
    Celeux, G.
    Govaert, G.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 2991 - 3002
  • [6] Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals
    South, L. F.
    Pettitt, A. N.
    Drovandi, C. C.
    BAYESIAN ANALYSIS, 2019, 14 (03): : 753 - 776
  • [7] An adaptive sequential Monte Carlo method for approximate Bayesian computation
    Del Moral, Pierre
    Doucet, Arnaud
    Jasra, Ajay
    STATISTICS AND COMPUTING, 2012, 22 (05) : 1009 - 1020
  • [8] A Sequential Monte Carlo Method for Bayesian Analysis of Massive Datasets
    Greg Ridgeway
    David Madigan
    Data Mining and Knowledge Discovery, 2003, 7 : 301 - 319
  • [9] A sequential Monte Carlo method for Bayesian analysis of massive datasets
    Ridgeway, G
    Madigan, D
    DATA MINING AND KNOWLEDGE DISCOVERY, 2003, 7 (03) : 301 - 319
  • [10] Independent Resampling Sequential Monte Carlo Algorithms
    Lamberti, Roland
    Petetin, Yohan
    Desbouvries, Francois
    Septier, Francois
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (20) : 5318 - 5333