Application of Time-Fractional Order Bloch Equation in Magnetic Resonance Fingerprinting

被引:0
作者
Wang, Haifeng [1 ]
Zou, Lixian [1 ,2 ]
Ye, Huihui [3 ]
Su, Shi [1 ]
Chang, Yuchou [4 ]
Liu, Xin [1 ]
Liang, Dong [1 ]
机构
[1] Chinese Acad Sci, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen Inst Adv Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Beijing, Peoples R China
[3] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou, Zhejiang, Peoples R China
[4] Univ Houston Downtown, Dept Comp Sci & Engn Technol, Houston, TX USA
来源
2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019) | 2019年
基金
中国国家自然科学基金;
关键词
Magnetic resonance fingerprinting; fractional calculus; Bloch equation; anomalous relaxation;
D O I
10.1109/isbi.2019.8759427
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Magnetic resonance fingerprinting (MRF) is one novel fast quantitative imaging framework for simultaneous quantification of multiple parameters with pseudo - randomized acquisition patterns. The accuracy of the resulting multi-parameters is very important for clinical applications. In this paper, we derived signal evolutions from the anomalous relaxation using a fractional calculus. More specifically, we utilized time-fractional order extension of the Bloch equations to generate dictionary to provide more complex system descriptions for MRF applications. The representative results of phantom experiments demonstrated the good accuracy performance when applying the time-fractional order Bloch equations to generate dictionary entries in the MRF framework. The utility of the proposed method is also validated by in-vivo study.
引用
收藏
页码:1704 / 1707
页数:4
相关论文
共 14 条
[1]   Pseudo Steady-State Free Precession for MR-Fingerprinting [J].
Asslaender, Jakob ;
Glaser, Steffen J. ;
Hennig, Juergen .
MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (03) :1151-1161
[2]   Fractional Bloch equation with delay [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha ;
Baleanu, Dumitru ;
Magin, Richard .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (05) :1355-1365
[3]   What are normal relaxation times of tissues at 3 T? [J].
Bojorquez, Jorge Zavala ;
Bricq, Stephanie ;
Acquitter, Clement ;
Brunotte, Francois ;
Walker, Paul M. ;
Lalande, Alain .
MAGNETIC RESONANCE IMAGING, 2017, 35 :69-80
[4]   Robust sliding-window reconstruction for Accelerating the acquisition of MR fingerprinting [J].
Cao, Xiaozhi ;
Liao, Congyu ;
Wang, Zhixing ;
Chen, Ying ;
Ye, Huihui ;
He, Hongjian ;
Zhong, Jianhui .
MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (04) :1579-1588
[5]   Practical medical applications of quantitative MR relaxometry [J].
Cheng, Hai-Ling Margaret ;
Stikov, Nikola ;
Ghugre, Nilesh R. ;
Wright, Graham A. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 36 (04) :805-824
[6]   MR Fingerprinting Using Fast Imaging with Steady State Precession (FISP) with Spiral Readout [J].
Jiang, Yun ;
Ma, Dan ;
Seiberlich, Nicole ;
Gulani, Vikas ;
Griswold, Mark A. .
MAGNETIC RESONANCE IN MEDICINE, 2015, 74 (06) :1621-1631
[7]  
Korzdorfer G., 2018, MAGN RESON MED, P1
[8]   Magnetic resonance fingerprinting [J].
Ma, Dan ;
Gulani, Vikas ;
Seiberlich, Nicole ;
Liu, Kecheng ;
Sunshine, Jeffrey L. ;
Duerk, Jeffrey L. ;
Griswold, Mark A. .
NATURE, 2013, 495 (7440) :187-192
[9]   Anomalous NMR relaxation in cartilage matrix components and native cartilage: Fractional-order models [J].
Magin, Richard L. ;
Li, Weiguo ;
Pilar Velasco, M. ;
Trujillo, Juan ;
Reiter, David A. ;
Morgenstern, Ashley ;
Spencer, Richard G. .
JOURNAL OF MAGNETIC RESONANCE, 2011, 210 (02) :184-191
[10]   Characterization of Anomalous Relaxation Using the Time-Fractional Bloch Equation and Multiple Echo T2*-Weighted Magnetic Resonance Imaging at 7 T [J].
Qin, Shanlin ;
Liu, Fawang ;
Turner, Ian W. ;
Yu, Qiang ;
Yang, Qianqian ;
Vegh, Viktor .
MAGNETIC RESONANCE IN MEDICINE, 2017, 77 (04) :1485-1494