Time-harmonic acoustic wave scattering in an ocean with depth-dependent sound speed

被引:1
|
作者
Lechleiter, A. [1 ]
Rienmueller, T. [1 ]
机构
[1] Univ Bremen, Dept Math, Postfach 33 04 40, D-28334 Bremen, Germany
关键词
scattering in waveguides; depth-dependent background sound speed; variational solution theory; FIELD;
D O I
10.1080/00036811.2015.1047831
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Time-harmonic acoustic wave propagation in an inhomogeneous ocean with depth-dependent sound speed can be modeled by the Helmholtz equation in an infinite, three-dimensional (3D) waveguide of finite height. Using variational theory in Sobolev spaces we prove well posedness of the corresponding scattering problem from a bounded inhomogeneity inside such an ocean. To this end, we introduce an exterior Dirichlet-to-Neumann operator for depth-dependent sound speed and prove boundedness, coercivity, and holomorphic dependence of this operator in function spaces adapted to our weak solution theory. Analytic Fredholm theory then yields existence and uniqueness of solution for the scattering problem for all but a countable sequence of frequencies. The latter result generalizes corresponding theory for waveguide scattering with constant sound speed and easily extends to various related scattering problems, e.g. to scattering from impenetrable obstacles.
引用
收藏
页码:978 / 999
页数:22
相关论文
共 50 条
  • [1] ACOUSTIC PROPAGATION IN A UNIFORMLY MOVING OCEAN CHANNEL WITH DEPTH-DEPENDENT SOUND SPEED
    STALLWORTH, LA
    JACOBSON, MJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1972, 52 (01): : 344 - +
  • [2] Collocation discretization for an integral equation in ocean acoustics with depth-dependent speed of sound
    Lechleiter, Armin
    Rienmueller, Tobias
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) : 1608 - 1624
  • [3] Eigenproblem for an Ocean Acoustic Waveguide with Random Depth Dependent Sound Speed
    Vendhan, C. P.
    Chowdhury, A. Datta
    Mudaliar, Saba
    Bhattacharyya, S. K.
    2014 USNC-URSI RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2014, : 226 - 226
  • [4] SOUND TRANSMISSION IN AN ISOSPEED OCEAN CHANNEL WITH DEPTH-DEPENDENT CURRENT
    STALLWORTH, LA
    JACOBSON, MJ
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1972, 51 (05): : 1738 - +
  • [5] A TRULY EXACT PERFECT ABSORBING LAYER FOR TIME-HARMONIC ACOUSTIC WAVE SCATTERING PROBLEMS
    Yang, Zhiguo
    Wang, Li-Lian
    Gao, Yang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (02): : A1027 - A1061
  • [6] THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC ACOUSTIC-WAVES
    COLTON, D
    SIAM REVIEW, 1984, 26 (03) : 323 - 350
  • [7] BOUNDARY INTEGRAL-EQUATIONS IN TIME-HARMONIC ACOUSTIC SCATTERING
    KRESS, R
    MATHEMATICAL AND COMPUTER MODELLING, 1991, 15 (3-5) : 229 - 243
  • [8] WAVENUMBER-EXPLICIT BOUNDS IN TIME-HARMONIC ACOUSTIC SCATTERING
    Spence, E. A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) : 2987 - 3024
  • [9] Validation of acoustic models for time-harmonic dissipative scattering problems
    Bermudez, Alfredo
    Hervella-Nieto, Luis
    Prieto, Andres
    Rodriguez, Rodolfo
    JOURNAL OF COMPUTATIONAL ACOUSTICS, 2007, 15 (01) : 95 - 121
  • [10] Wave reflection from porous ocean sediment with depth-dependent properties
    Lee, KH
    Seong, WJ
    OCEANS 2003 MTS/IEEE: CELEBRATING THE PAST...TEAMING TOWARD THE FUTURE, 2003, : 1076 - 1081