Statistics of resonances in one-dimensional continuous systems

被引:5
|
作者
Feinberg, Joshua [1 ,2 ]
机构
[1] Univ Haifa, Dept Phys, IL-36006 Tivon, Israel
[2] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
来源
PRAMANA-JOURNAL OF PHYSICS | 2009年 / 73卷 / 03期
基金
以色列科学基金会;
关键词
Resonances; spectral determinant; disordered systems; Fokker-Planck equation; average density of resonances; RANDOM-MATRIX THEORY; RANDOM-MEDIA;
D O I
10.1007/s12043-009-0108-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the average density of resonances (DOR) of a disordered one-dimensional continuous open system. The disordered system is semi-infinite, with white-noise random potential, and it is coupled to the external world by a semi-infinite continuous perfect lead. Our main result is an integral representation for the DOR which involves the probability density function of the logarithmic derivative of the wave function at the contact point.
引用
收藏
页码:565 / 572
页数:8
相关论文
共 50 条
  • [11] Transmission resonances anomaly in one-dimensional disordered quantum systems
    Eisenbach, A.
    Bliokh, Y.
    Freilkher, V.
    Kaveh, M.
    Berkovits, R.
    PHYSICAL REVIEW B, 2016, 94 (01)
  • [12] Lattice-Induced Resonances in One-Dimensional Bosonic Systems
    von Stecher, Javier
    Gurarie, Victor
    Radzihovsky, Leo
    Rey, Ana Maria
    PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [13] MAGNETIC RESONANCES IN ONE-DIMENSIONAL SPIN SYSTEMS NENP AND NINO
    SIELING, M
    PALME, W
    LUTHI, B
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1995, 96 (03): : 297 - 303
  • [14] THE STATISTICS OF ONE-DIMENSIONAL RESISTANCES
    KIRKMAN, PD
    PENDRY, JB
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (24): : 4327 - 4344
  • [16] One-dimensional localization in the presence of resonances
    Elattari, B
    Kottos, T
    PHYSICAL REVIEW B, 1999, 59 (08) : R5265 - R5268
  • [17] Resonances in a one-dimensional disordered chain
    Kunz, Herve
    Shapiro, Boris
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (32): : 10155 - 10160
  • [18] One-dimensional resonances for a Schrodinger operator
    Servat, E
    ASYMPTOTIC ANALYSIS, 2004, 39 (3-4) : 187 - 224
  • [19] Tunnel resonances for one-dimensional barriers
    Fernandez, FM
    CHEMICAL PHYSICS LETTERS, 1997, 281 (4-6) : 337 - 342
  • [20] EXISTENCE OF STARK-WANNIER RESONANCES FOR NONPERIODIC ONE-DIMENSIONAL SYSTEMS
    NENCIU, A
    NENCIU, G
    PHYSICAL REVIEW B, 1989, 40 (06): : 3622 - 3624